GROUND STATE TRAVELLING WAVES IN INFINITE LATTICES

被引:2
|
作者
Zhang, Luyu [1 ]
Ma, Shiwang [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
FPU lattice; ground state wave; Nehari manifold; SOLITARY WAVES; EXISTENCE;
D O I
10.1016/S0252-9602(16)30039-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider FPU lattices with particles of unit mass. The dynamics of the system is described by the infinite system of second order differential equations q(n) = U'(q(n+1) - q(n)) - U'(q(n) - q(n-1)), n is an element of Z, where q(n) denotes the displacement of the n-th lattice site and U is the potential of interaction between two adjacent particles. Inspired by previous work due to Szulkin and Weth (Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822), we investigate the existence of solitary ground waves, i.e., nontrivial solutions with least possible energy.
引用
收藏
页码:782 / 790
页数:9
相关论文
共 50 条
  • [21] SAGITTAL ELASTIC-WAVES IN INFINITE AND SEMI-INFINITE SUPER-LATTICES
    DJAFARIROUHANI, B
    DOBRZYNSKI, L
    DUPARC, OH
    CAMLEY, RE
    MARADUDIN, AA
    PHYSICAL REVIEW B, 1983, 28 (04): : 1711 - 1720
  • [22] ON LONG WAVES AND SOLITONS IN PARTICLE LATTICES WITH FORCES OF INFINITE RANGE
    Ingimarson, Benjamin
    Pego, Robert L.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (03) : 808 - 830
  • [23] Travelling waves in delayed reaction-diffusion equations on higher dimensional lattices
    Wu, Shi-Liang
    Liu, San-Yang
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (03) : 384 - 401
  • [24] An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices
    Xu, Haitao
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    Vainchtein, Anna
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [25] Standing waves for discrete Schrodinger equations in infinite lattices with saturable nonlinearities
    Chen, Guanwei
    Ma, Shiwang
    Wang, Zhi-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3493 - 3518
  • [26] MULTI-DIMENSIONAL STABILITY OF WAVES TRAVELLING THROUGH RECTANGULAR LATTICES IN RATIONAL DIRECTIONS
    Hoffman, A.
    Hupkes, H. J.
    Van Vleck, E. S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8757 - 8808
  • [27] Periodic travelling waves on damped 2D lattices with oscillating external forces *
    Zhang, Ling
    Guo, Shangjiang
    NONLINEARITY, 2021, 34 (05) : 2919 - 2936
  • [28] Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions
    Feckan, Michal
    Rothos, Vassilis M.
    NONLINEARITY, 2007, 20 (02) : 319 - 341
  • [29] Equations, State, and Lattices of Infinite-Dimensional Hilbert Spaces
    Norman D. Megill
    Mladen Pavičićc
    International Journal of Theoretical Physics, 2000, 39 : 2337 - 2379
  • [30] Steady-state visual evoked potentials and travelling waves
    Burkitt, GR
    Silberstein, RB
    Cadusch, PJ
    Wood, AW
    CLINICAL NEUROPHYSIOLOGY, 2000, 111 (02) : 246 - 258