Assessment of survival prediction models based on microarray data

被引:80
|
作者
Schumacher, Martin [1 ]
Binder, Harald
Gerds, Thomas
机构
[1] Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, Dep Med Biometry & Stat, Freiburg, Germany
[2] Univ Freiburg, Freiburg Ctr Data Anal & Model Bldg, Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btm232
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In the process of developing risk prediction models, various steps of model building and model selection are involved. If this process is not adequately controlled, overfitting may result in serious overoptimism leading to potentially erroneous conclusions. Methods: For right censored time-to-event data, we estimate the prediction error for assessing the performance of a risk prediction model (Gerds and Schumacher, 2006; Graf et al., 1999). Furthermore, resampling methods are used to detect overfitting and resulting overoptimism and to adjust the estimates of prediction error (Gerds and Schumacher, 2007). Results: We show how and to what extent the methodology can be used in situations characterized by a large number of potential predictor variables where overfitting may be expected to be overwhelming. This is illustrated by estimating the prediction error of some recently proposed techniques for fitting a multivariate Cox regression model applied to the data of a prognostic study in patients with diffuse large-B-cell lymphoma (DLBCC).
引用
收藏
页码:1768 / 1774
页数:7
相关论文
共 50 条
  • [41] MGraph: graphical models for microarray data analysis
    Wang, JB
    Myklebost, O
    Hovig, E
    BIOINFORMATICS, 2003, 19 (17) : 2210 - 2211
  • [42] Bayesian Dimension Reduction Models for Microarray Data
    Shieh, Albert D.
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2009, 5495 : 498 - 506
  • [43] Hierarchical mixture models for biclustering in microarray data
    Martella, F.
    Alfo, M.
    Vichi, M.
    STATISTICAL MODELLING, 2011, 11 (06) : 489 - 505
  • [44] Classification of microarray data with factor mixture models
    Martella, F
    BIOINFORMATICS, 2006, 22 (02) : 202 - 208
  • [45] Liver toxicity prediction and classification using microarray data: Application of reference data-trained models to customers' data sets.
    Castle, AL
    Johnson, KR
    Higgs, BW
    Porter, MW
    Elashoff, M
    Chang, CG
    Mendrick, D
    TOXICOLOGICAL SCIENCES, 2003, 72 : 244 - 244
  • [46] Online performance and proactive maintenance assessment of data driven prediction models
    Shen, Yingjun
    Wang, Taohong
    Song, Zhe
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (08) : 3959 - 3993
  • [47] Predicting survival from microarray data -: a comparative study
    Bovelstad, H. M.
    Nygard, S.
    Storvold, H. L.
    Aldrin, M.
    Borgan, O.
    Frigessi, A.
    Lingjaerde, O. C.
    BIOINFORMATICS, 2007, 23 (16) : 2080 - 2087
  • [48] Network-based de-noising improves prediction from microarray data
    Kato, T
    Murata, Y
    Miura, K
    Asai, K
    Horton, PB
    Tsuda, K
    Fujibuchi, W
    BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
  • [49] Virulence factor prediction in Streptococcus pyogenes using classification and clustering based on microarray data
    Liliana López-Kleine
    Francisco Torres-Avilés
    Fabio H. Tejedor
    Luz A. Gordillo
    Applied Microbiology and Biotechnology, 2012, 93 : 2091 - 2098
  • [50] Virulence factor prediction in Streptococcus pyogenes using classification and clustering based on microarray data
    Lopez-Kleine, Liliana
    Torres-Aviles, Francisco
    Tejedor, Fabio H.
    Gordillo, Luz A.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 93 (05) : 2091 - 2098