Assessment of survival prediction models based on microarray data

被引:80
|
作者
Schumacher, Martin [1 ]
Binder, Harald
Gerds, Thomas
机构
[1] Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, Dep Med Biometry & Stat, Freiburg, Germany
[2] Univ Freiburg, Freiburg Ctr Data Anal & Model Bldg, Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btm232
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In the process of developing risk prediction models, various steps of model building and model selection are involved. If this process is not adequately controlled, overfitting may result in serious overoptimism leading to potentially erroneous conclusions. Methods: For right censored time-to-event data, we estimate the prediction error for assessing the performance of a risk prediction model (Gerds and Schumacher, 2006; Graf et al., 1999). Furthermore, resampling methods are used to detect overfitting and resulting overoptimism and to adjust the estimates of prediction error (Gerds and Schumacher, 2007). Results: We show how and to what extent the methodology can be used in situations characterized by a large number of potential predictor variables where overfitting may be expected to be overwhelming. This is illustrated by estimating the prediction error of some recently proposed techniques for fitting a multivariate Cox regression model applied to the data of a prognostic study in patients with diffuse large-B-cell lymphoma (DLBCC).
引用
收藏
页码:1768 / 1774
页数:7
相关论文
共 50 条
  • [21] Joint Models for Event Prediction From Time Series and Survival Data
    Yue, Xubo
    Al Kontar, Raed
    TECHNOMETRICS, 2021, 63 (04) : 477 - 486
  • [22] Mortality prediction using survival energy models with functional data analysis
    Mitsuda, Daiki
    Shimizu, Yasutaka
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (02) : 841 - 859
  • [23] Field assessment of liquefaction prediction models based on geotechnical versus geospatial data, with lessons for each
    Geyin, Mertcan
    Baird, Alex J.
    Maurer, Brett W.
    EARTHQUAKE SPECTRA, 2020, 36 (03) : 1386 - 1411
  • [24] Prediction of Lung Cancer Survival Based on Multiomic Data
    Jaksik, Roman
    Smieja, Jaroslaw
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 : 116 - 127
  • [25] Multiple testing in the survival analysis of microarray data
    Correa, JA
    Dudoit, S
    Goldstein, DR
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 : 298 - 298
  • [26] The dChip survival analysis module for microarray data
    Amin, Samir B.
    Shah, Parantu K.
    Yan, Aimin
    Adamia, Sophia
    Minvielle, Stephane
    Avet-Loiseau, Herve
    Munshi, Nikhil C.
    Li, Cheng
    BMC BIOINFORMATICS, 2011, 12
  • [27] Additive risk survival model with microarray data
    Shuangge Ma
    Jian Huang
    BMC Bioinformatics, 8
  • [28] The dChip survival analysis module for microarray data
    Samir B Amin
    Parantu K Shah
    Aimin Yan
    Sophia Adamia
    Stéphane Minvielle
    Hervé Avet-Loiseau
    Nikhil C Munshi
    Cheng Li
    BMC Bioinformatics, 12
  • [29] Prophet, a web-based tool for class prediction using microarray data
    Medina, Ignacio
    Montaner, David
    Tarraga, Joaquin
    Dopazo, Joaquin
    BIOINFORMATICS, 2007, 23 (03) : 390 - 391
  • [30] Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data
    Yamamoto, Yoshiharu Y.
    Yoshioka, Yohei
    Hyakumachi, Mitsuro
    Maruyama, Kyonoshin
    Yamaguchi-Shinozaki, Kazuko
    Tokizawa, Mutsutomo
    Koyama, Hiroyuki
    BMC PLANT BIOLOGY, 2011, 11