Silica-immobilized enzymes for multi-step synthesis in microfluidic devices

被引:61
|
作者
Luckarift, Heather R.
Ku, Bosung S.
Dordick, Jonathan S.
Spain, Jim C. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
[2] USAF, Res Lab, Tyndall AFB, FL 32403 USA
[3] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
关键词
microfluidics; immobilized enzyme; amino-phenoxazinone; chips; sequential catalysis;
D O I
10.1002/bit.21447
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The combinatorial synthesis of 2-aminophenoxazin-3-one (APO) in a microfluidic device is reported. Individual microfluidic chips containing metallic zinc, silica-immobilized hydroxylaminobenzene mutase and silica-immobilized soybean peroxidase are connected in series to create a chemo-enzymatic system for synthesis. Zinc catalyzes the initial reduction of nitrobenzene to hydroxylaminobenzene which undergoes a biocatalytic conversion to 2-aminophenol, followed by enzymatic polymerization to APO. Silica-immobilization of enzymes allows the rapid stabilization and integration of the biocatalyst within a microfluidic device with minimal preparation. The system proved suitable for synthesis of a complex natural product (APO) from a simple substrate (nitrobenzene) under continuous flow conditions.
引用
收藏
页码:701 / 705
页数:5
相关论文
共 50 条
  • [41] Multi-step microfluidic system for blood plasma separation: architecture and separation efficiency
    Julien Marchalot
    Yves Fouillet
    Jean-Luc Achard
    Microfluidics and Nanofluidics, 2014, 17 : 167 - 180
  • [42] Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme
    Mazutis, Linas
    Baret, Jean-Christophe
    Treacy, Patrick
    Skhiri, Yousr
    Araghi, Ali Fallah
    Ryckelynck, Michael
    Taly, Valerie
    Griffiths, Andrew D.
    LAB ON A CHIP, 2009, 9 (20) : 2902 - 2908
  • [43] PDMS based microfluidic circuits for multi-step preparation of PET imaging probes
    Sui, Guodong
    Lee, Cheng-Chung
    Satyamurthy, Nagichettiar
    Heath, James R.
    Phelps, Michael E.
    Quake, Stephen R.
    Tseng, Hsian-Rong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3659 - U3660
  • [44] Multi-step microfludic reactor for the synthesis of hybrid nanoparticles
    Abdul Wahab, Malik
    Erdem, E. Yegan
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2020, 30 (08)
  • [45] Flow chemistry in the multi-step synthesis of natural products
    Wan, Li
    Kong, Gaopan
    Liu, Minjie
    Jiang, Meifen
    Cheng, Dang
    Chen, Fener
    GREEN SYNTHESIS AND CATALYSIS, 2022, 3 (03): : 243 - 258
  • [46] Semi-continuous multi-step synthesis of lamivudine
    Mandala, Devender
    Chada, Sravanthi
    Watts, Paul
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2017, 15 (16) : 3444 - 3454
  • [47] Solid supported reagents in multi-step flow synthesis
    Baxendale, I. R.
    Ley, S. V.
    NEW AVENUES TO EFFICIENT CHEMICAL SYNTHESIS: EMERGING TECHNOLOGIES, 2007, 3 : 151 - +
  • [48] Multi-step non-covalent synthesis.
    Meijer, EW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U918 - U918
  • [49] Multi-step Flow Synthesis of the Anthelmintic Drug Praziquantel
    Phull, Manjinder Singh
    Jadav, Surender Singh
    Bohara, Chander Singh
    Gundla, Rambabu
    Mainkar, Prathama S.
    SYNOPEN, 2023, 07 (03): : 362 - 370
  • [50] Fully Automated Multi-Step Synthesis of Block Copolymers
    Schuett, Timo
    Kimmig, Julian
    Zechel, Stefan
    Schubert, Ulrich S.
    POLYMERS, 2022, 14 (02)