Silica-immobilized enzymes for multi-step synthesis in microfluidic devices

被引:61
|
作者
Luckarift, Heather R.
Ku, Bosung S.
Dordick, Jonathan S.
Spain, Jim C. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
[2] USAF, Res Lab, Tyndall AFB, FL 32403 USA
[3] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
关键词
microfluidics; immobilized enzyme; amino-phenoxazinone; chips; sequential catalysis;
D O I
10.1002/bit.21447
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The combinatorial synthesis of 2-aminophenoxazin-3-one (APO) in a microfluidic device is reported. Individual microfluidic chips containing metallic zinc, silica-immobilized hydroxylaminobenzene mutase and silica-immobilized soybean peroxidase are connected in series to create a chemo-enzymatic system for synthesis. Zinc catalyzes the initial reduction of nitrobenzene to hydroxylaminobenzene which undergoes a biocatalytic conversion to 2-aminophenol, followed by enzymatic polymerization to APO. Silica-immobilization of enzymes allows the rapid stabilization and integration of the biocatalyst within a microfluidic device with minimal preparation. The system proved suitable for synthesis of a complex natural product (APO) from a simple substrate (nitrobenzene) under continuous flow conditions.
引用
收藏
页码:701 / 705
页数:5
相关论文
共 50 条
  • [31] Multi-step particle-based microfluidic test for biotin measurement
    Laanevali, Airiin
    Saar, Indrek
    Nasirova, Naila
    Evard, Hanno
    MICROFLUIDICS AND NANOFLUIDICS, 2024, 28 (10)
  • [32] Multi-step preparation of PET imaging probes in integrated microfluidic circuits
    Sui, GD
    Lee, CC
    Satyamurthy, N
    Heath, JR
    Phelps, ME
    Quake, SR
    Tseng, HR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2757 - U2758
  • [33] Highly Efficient Multi-Step Oxidation Bioanode Using Microfluidic Channels
    Komatsu, Tomohiro
    Hishii, Kazuki
    Kimura, Michiko
    Amaya, Satoshi
    Sakamoto, Hiroaki
    Takamura, Eiichiro
    Satomura, Takenori
    Suye, Shin-ichiro
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (24)
  • [34] Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system
    Shestopalov, I
    Tice, JD
    Ismagilov, RF
    LAB ON A CHIP, 2004, 4 (04) : 316 - 321
  • [35] Multi-step planetary gear drives for large mobile devices
    Berger, G
    Pape, M
    GEAR DRIVES '99: PLANETARY GEARBOXES, 1999, 1460 : 173 - 196
  • [36] Spectro-Electrochemical Microfluidic Platform for Monitoring Multi-Step Cascade Reactions
    Andersen, Nalin I.
    Artyushkova, Kateryna
    Matanovic, Ivana
    Hickey, David P.
    Minteer, Shelley D.
    Atanassov, Plamen
    CHEMELECTROCHEM, 2019, 6 (01) : 246 - 251
  • [37] Automatic microfluidic system to perform multi-step magneto-biochemical assays
    Gomez-de Pedro, S.
    Berenguel-Alonso, M.
    Couceiro, P.
    Alonso-Chamarro, J.
    Puyol, M.
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 245 : 477 - 483
  • [38] Multi-step microfluidic polymerization reactions conducted in droplets:: The internal trigger approach
    Li, Wei
    Pharn, Hung H.
    Nie, Zhihong
    MacDonald, Brendan
    Gueenther, Axel
    Kumacheva, Eugenia
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) : 9935 - 9941
  • [39] Multi-step microfluidic system for blood plasma separation: architecture and separation efficiency
    Marchalot, Julien
    Fouillet, Yves
    Achard, Jean-Luc
    MICROFLUIDICS AND NANOFLUIDICS, 2014, 17 (01) : 167 - 180
  • [40] Multi-step microfluidic polymerization reactions conducted in droplets: The internal trigger approach
    Li, Wei
    Pham, Hung H.
    Nie, Zhihong
    MacDonald, Brendan
    Güenther, Axel
    Kumacheva, Eugenia
    Journal of the American Chemical Society, 2008, 130 (30): : 9935 - 9941