Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel

被引:49
|
作者
Matlack, Kathryn H. [1 ]
Bradley, Harrison A. [2 ]
Thiele, Sebastian [3 ]
Kim, Jin-Yeon [3 ]
Wall, James J. [2 ,4 ]
Jung, Hee Joon [5 ]
Qu, Jianmin [6 ]
Jacobs, Laurence J. [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[4] Elect Power Res Inst, Charlotte, NC 28262 USA
[5] Pacific NW Natl Lab, Richland, WA 99354 USA
[6] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
关键词
Nonlinear ultrasonic methods; Thermal embrittlement; Precipitate hardening; Nonlinear Rayleigh waves; RAYLEIGH SURFACE-WAVES; HARMONIC-GENERATION; RPV STEELS; MICROSTRUCTURAL EVOLUTION; MODEL ALLOYS; EMBRITTLEMENT; KINETICS; DAMAGE; PERSPECTIVE; FE;
D O I
10.1016/j.ndteint.2014.11.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This research is part of a broader effort to develop a nondestructive evaluation technique to monitor radiation damage in reactor pressure vessel steels, the main contributor being copper-rich precipitates. In this work, 17-4PH stainless steel is thermally aged to study the effects of copper precipitates on the acoustic nonlinearity parameter. Nonlinear ultrasonic measurements using Rayleigh waves are performed on isothermally aged 17-4PH. Results showed a decrease in the acoustic nonlinearity parameter with increasing aging time, consistent with evidence of copper precipitation from hardness, thermoelectric power, transmission electron microscopy, and atom probe tomography measurements. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 50 条
  • [31] Sintering of 17-4PH stainless steel feedstock for metal injection molding
    Ye, Hezhou
    Liu, Xing Yang
    Hong, Hanping
    [J]. MATERIALS LETTERS, 2008, 62 (19) : 3334 - 3336
  • [32] Heat treatment response of additively manufactured 17-4PH stainless steel
    Lashgari, H. R.
    Adabifiroozjaei, E.
    Kong, C.
    Molina-Luna, Leopoldo
    Li, S.
    [J]. MATERIALS CHARACTERIZATION, 2023, 197
  • [33] Dynamic Constitutive Behavior of Additively Manufactured 17-4PH Stainless Steel
    Fox, C.
    Tilton, C.
    Rousseau, C-E
    Shukla, A.
    Sheeley, C.
    Hebert, R.
    [J]. JOURNAL OF DYNAMIC BEHAVIOR OF MATERIALS, 2022, 8 (02) : 242 - 254
  • [34] Influence of Sulfur Content on the Corrosion Resistance of 17-4PH Stainless Steel
    Tavares, S. S. M.
    Pardal, J. M.
    Martins, T. R. B.
    da Silva, M. R.
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (06) : 2512 - 2519
  • [35] Effect of casting defect on mechanical properties of 17-4PH stainless steel
    Kim, Jong-Yup
    Lee, Joon-Hyun
    Nahm, Seung-Hoon
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (25-27): : 4463 - 4468
  • [36] BEHAVIOURS OF PRECIPITATES OF 17-4PH STAINLESS STEEL BY ARC WELDING HEAT
    HOMMA, M
    MORITA, S
    YAMAYA, K
    [J]. TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS, 1966, 7 (03): : 178 - &
  • [37] The modification of corrosion resistance of 17-4PH stainless steel by cutting process
    Liu, Guoliang
    Huang, Chuanzhen
    Zou, Bin
    Liu, Hanlian
    Liu, Zhanqiang
    Liu, Yue
    Li, Chengwu
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2020, 49 : 447 - 455
  • [38] Tensile behavior of 17-4PH stainless steel under rapid heating
    Kim, JH
    Lee, KB
    Kim, JH
    [J]. ADVANCES IN FRACTURE AND STRENGTH, PTS 1- 4, 2005, 297-300 : 1482 - 1488
  • [39] Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching
    Chen, Zhaoyun
    Zhou, Guijuan
    Chen, Zhonghua
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 : 536 - 541
  • [40] Failure Analysis of a 17-4PH Stainless Steel Part in an Exhaust Fastener
    Yousefi, Masoud
    Rajabi, Masoud
    Yousefi, Mahnaz
    Kerahroodi, Mohamammad Sadegh Amiri
    [J]. JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2021, 21 (06) : 2278 - 2289