Inertial manifolds for the 3D modified-Leray-α model

被引:9
|
作者
Li, Xinhua [1 ]
Sun, Chunyou [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Inertial manifold; 3D modified-Leray-alpha model; Critical exponent; EQUATIONS;
D O I
10.1016/j.jde.2019.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the critical modified-Leray-alpha model in T-3 and prove the existence of an N-dimensional inertial manifold for this problem. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1532 / 1569
页数:38
相关论文
共 50 条
  • [41] Remarks on Leray's self-similar solutions to the 3D magnetohydrodynamic equations
    Benbernou, Samia
    Ragusa, Maria Alessandra
    Terbeche, Mekki
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (17) : 2615 - 2618
  • [42] BOUNDS ON ENERGY AND ENSTROPHY FOR THE 3D NAVIER-STOKES-α AND LERAY-α MODELS
    Farhat, Aseel
    Jolly, Michael
    Lunasin, Evelyn
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (05) : 2127 - 2140
  • [43] MODIFIED WEAK FUSION MODEL FOR DEPTHLESS STREAMING OF 3D VIDEOS
    Temel, Dogancan
    Lin, Qiongjie
    Zhang, Guangcong
    AlRegib, Ghassan
    [J]. ELECTRONIC PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2013,
  • [44] Recovering Human Pose in 3D by Visual Manifolds
    Wang, Zibin
    Chung, Ronald
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1771 - 1774
  • [45] Mogami manifolds, nuclei, and 3D simplicial gravity
    Benedetti, Bruno
    [J]. NUCLEAR PHYSICS B, 2017, 919 : 541 - 559
  • [46] Holographic 3d N=1 conformal manifolds
    Bobev, Nikolay
    Gautason, Friorik Freyr
    van Muiden, Jesse
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, (07):
  • [47] The contact magnetic flow in 3D Sasakian manifolds
    Cabrerizo, J. L.
    Fernandez, M.
    Gomez, J. S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (19)
  • [48] Stochastic Lagrangian Path for Leray’s Solutions of 3D Navier–Stokes Equations
    Xicheng Zhang
    Guohuan Zhao
    [J]. Communications in Mathematical Physics, 2021, 381 : 491 - 525
  • [49] Complex Dynamical Behaviors in a 3D Simple Chaotic Flow with 3D Stable or 3D Unstable Manifolds of a Single Equilibrium
    Wei, Zhouchao
    Li, Yingying
    Sang, Bo
    Liu, Yongjian
    Zhang, Wei
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (07):
  • [50] Smooth 3D manifolds based on thin plates
    Grachev, V. A.
    Neustadt, Y. S.
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (03) : 477 - 490