Stochastic Lagrangian Path for Leray’s Solutions of 3D Navier–Stokes Equations

被引:0
|
作者
Xicheng Zhang
Guohuan Zhao
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Universität Bielefeld,Fakultät für Mathematik
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show the existence of stochastic Lagrangian particle trajectory for Leray’s solution of 3D Navier–Stokes equations. More precisely, for any Leray’s solution u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{u }$$\end{document} of 3D-NSE and each (s,x)∈R+×R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(s,x)\in \mathbb {R}_+\times \mathbb {R}^3$$\end{document}, we show the existence of weak solutions to the following SDE, which have densities ρs,x(t,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{s,x}(t,y)$$\end{document} belonging to Hq1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}^{1,p}_q$$\end{document} with p,q∈[1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q\in [1,2)$$\end{document} and 3p+2q>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{p}+\frac{2}{q}>4$$\end{document}: dXs,t=u(s,Xs,t)dt+2νdWt,Xs,s=x,t⩾s,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text {d} X_{s,t}=\mathbf{u } (s,X_{s,t})\text {d} t+\sqrt{2\nu }\text {d} W_t,\ \ X_{s,s}=x,\ \ t\geqslant s, \end{aligned}$$\end{document}where W is a three dimensional standard Brownian motion, ν>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu >0$$\end{document} is the viscosity constant. Moreover, we also show that for Lebesgue almost all (s, x), the solution Xs,·n(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^n_{s,\cdot }(x)$$\end{document} of the above SDE associated with the mollifying velocity field un\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{u }_n$$\end{document} weakly converges to Xs,·(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{s,\cdot }(x)$$\end{document} so that X is a Markov process in almost sure sense.
引用
收藏
页码:491 / 525
页数:34
相关论文
共 50 条
  • [1] Stochastic Lagrangian Path for Leray's Solutions of 3D Navier-Stokes Equations
    Zhang, Xicheng
    Zhao, Guohuan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (02) : 491 - 525
  • [2] LERAY'S BACKWARD SELF-SIMILAR SOLUTIONS TO THE 3D NAVIER-STOKES EQUATIONS IN MORREY SPACES
    Wang, Yanqing
    Jiu, Quansen
    Wei, Wei
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 2768 - 2791
  • [3] A Criterion for Uniqueness of Lagrangian Trajectories for Weak Solutions of the 3D Navier-Stokes Equations
    Robinson, James C.
    Sadowski, Witold
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (01) : 15 - 22
  • [4] A Criterion for Uniqueness of Lagrangian Trajectories for Weak Solutions of the 3D Navier-Stokes Equations
    James C. Robinson
    Witold Sadowski
    [J]. Communications in Mathematical Physics, 2009, 290 : 15 - 22
  • [5] Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise
    Arnaud Debussche
    Cyril Odasso
    [J]. Journal of Evolution Equations, 2006, 6 : 305 - 324
  • [6] Markov selections for the 3D stochastic Navier–Stokes equations
    Franco Flandoli
    Marco Romito
    [J]. Probability Theory and Related Fields, 2008, 140 : 407 - 458
  • [7] Remarks on 3D stochastic Navier-Stokes equations
    Flandoli, Ranco
    [J]. SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 123 - 134
  • [8] Exponential Mixing for the 3D Stochastic Navier–Stokes Equations
    Cyril Odasso
    [J]. Communications in Mathematical Physics, 2007, 270 : 109 - 139
  • [9] Ergodicity for the 3D stochastic Navier-Stokes equations
    Da Prato, G
    Debussche, A
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08): : 877 - 947
  • [10] ε-Regularity criteria in anisotropic Lebesgue spaces and Leray's self-similar solutions to the 3D Navier-Stokes equations
    Wang, Yanqing
    Wu, Gang
    Zhou, Daoguo
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):