Inertial manifolds for the 3D modified-Leray-α model

被引:9
|
作者
Li, Xinhua [1 ]
Sun, Chunyou [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Inertial manifold; 3D modified-Leray-alpha model; Critical exponent; EQUATIONS;
D O I
10.1016/j.jde.2019.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the critical modified-Leray-alpha model in T-3 and prove the existence of an N-dimensional inertial manifold for this problem. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1532 / 1569
页数:38
相关论文
共 50 条
  • [1] Inertial Manifolds for the 3D Modified-Leray-α Model with Periodic Boundary Conditions
    Kostianko, Anna
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (01) : 1 - 24
  • [2] A modified-Leray-α subgrid scale model of turbulence
    Ilyin, AA
    Lunasin, EM
    Titi, ES
    [J]. NONLINEARITY, 2006, 19 (04) : 879 - 897
  • [3] Stochastic 3D Leray-α model with fractional dissipation
    Shihu Li
    Wei Liu
    Yingchao Xie
    [J]. Science China Mathematics, 2023, 66 : 2589 - 2614
  • [4] Stochastic 3D Leray-α model with fractional dissipation
    Li, Shihu
    Liu, Wei
    Xie, Yingchao
    [J]. SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2589 - 2614
  • [5] Stochastic 3D Leray-α model with fractional dissipation
    Shihu Li
    Wei Liu
    Yingchao Xie
    [J]. Science China Mathematics, 2023, 66 (11) : 2589 - 2614
  • [7] On the Strong Solution for the 3D Stochastic Leray-Alpha Model
    Gabriel Deugoue
    Mamadou Sango
    [J]. Boundary Value Problems, 2010
  • [8] On the Strong Solution for the 3D Stochastic Leray-Alpha Model
    Deugoue, Gabriel
    Sango, Mamadou
    [J]. BOUNDARY VALUE PROBLEMS, 2010,
  • [9] Global Well-Posedness for Certain Density-Dependent Modified-Leray-α Models
    Chen, Wenying
    Fan, Jishan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [10] LARGE DEVIATIONS FOR STOCHASTIC 3D LERAY-α MODEL WITH FRACTIONAL DISSIPATION
    Li, Shihu
    Liu, Wei
    Xie, Yingchao
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2491 - 2510