Inertial Manifolds for the 3D Modified-Leray-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} Model with Periodic Boundary Conditions

被引:0
|
作者
Anna Kostianko
机构
[1] University of Surrey,Department of Mathematics
关键词
Modified-Leray-; model; Spatial averaging principle; Inertial manifold; 35B40; 35B42; 35Q30; 76F20;
D O I
10.1007/s10884-017-9635-x
中图分类号
学科分类号
摘要
The existence of an inertial manifold for the modified Leray-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} model with periodic boundary conditions in three-dimensional space is proved by using the so-called spatial averaging principle. Moreover, an adaptation of the Perron method for constructing inertial manifolds in the particular case of zero spatial averaging is suggested.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 50 条