Passive path following control for port-Hamiltonian systems

被引:3
|
作者
Fujimoto, Kenji [1 ]
Taniguchi, Mitsuru [1 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Dept Mech Sci & Engn, Nagoya, Aichi 4648603, Japan
关键词
Hamiltonian systems; path following control; virtual potential field control; passivity;
D O I
10.1109/CDC.2008.4739242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to path following control for port-Hamiltonian systems. The control law presented here is extension of an existing passive velocity field controller for fully actuated mechanical systems. The proposed method employs vector fields on the phase (co-tangent) spaces instead of those on the velocity (tangent) spaces. Since port-Hamiltonian systems can describe a wider class of systems than conventional mechanical ones, the proposed method is applicable to various systems. Furthermore, by making use of the port-Hamiltonian structure of the closed loop system, we can obtain a novel controller to assign the desired total energy. Moreover, a numerical simulation of a simple nonholonomic system exhibits the effectiveness of the proposed method.
引用
收藏
页码:1285 / 1290
页数:6
相关论文
共 50 条
  • [11] Multi-Dimensional Passive Sampled Port-Hamiltonian Systems
    Franken, Michel
    Reilink, Rob
    Misra, Sarthak
    Stramigioli, Stefano
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 1320 - 1326
  • [12] Memristive port-Hamiltonian control: Path-dependent damping injection in control of mechanical systems
    Doria-Cerezo, A.
    van der Heijden, L.
    Scherpen, J. M. A.
    EUROPEAN JOURNAL OF CONTROL, 2013, 19 (06) : 454 - 460
  • [13] Stochastic Port-Hamiltonian Systems
    Francesco Cordoni
    Luca Di Persio
    Riccardo Muradore
    Journal of Nonlinear Science, 2022, 32
  • [14] Incrementally port-Hamiltonian systems
    Camlibel, M. K.
    van der Schaft, A. J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2538 - 2543
  • [15] On Stochastic port-Hamiltonian Systems with Boundary Control and Observation
    Lamoline, F.
    Winkin, J. J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [16] Distributed Control for Infinite Dimensional Port-Hamiltonian Systems
    Macchelli, Alessandro
    IFAC PAPERSONLINE, 2021, 54 (19): : 52 - 57
  • [17] Multi-valued control of port-Hamiltonian systems
    Castaños F.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2022, 19 (04): : 419 - 429
  • [18] PORT-HAMILTONIAN SYSTEMS ON GRAPHS
    van der Schaft, A. J.
    Maschke, B. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 906 - 937
  • [19] Memristive port-Hamiltonian Systems
    Jeltsema, Dimitri
    van der Schaft, Arjan J.
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) : 75 - 93
  • [20] Port-Hamiltonian Modeling for Control
    van der Schaft, Arjan
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 3, 2020, 2020, 3 : 393 - 416