CURVATURE DECAY ESTIMATES OF GRAPHICAL MEAN CURVATURE FLOW IN HIGHER CODIMENSIONS

被引:8
|
作者
Smoczyk, Knut [1 ,2 ]
Tsui, Mao-Pei [3 ,4 ]
Wang, Mu-Tao [5 ]
机构
[1] Leibniz Univ Hannover, Inst Differentialgeometrie, Welfengarten 1, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Welfengarten 1, D-30167 Hannover, Germany
[3] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[4] Univ Toledo, Dept Math & Stat, 2801 W Bancroft St, Toledo, OH 43606 USA
[5] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Mean curvature flow; MAPS; EXISTENCE; EVOLUTION; SURFACES;
D O I
10.1090/tran/6624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive pointwise curvature estimates for graphical mean curvature flows in higher codimensions for a flat ambient space. To the best of our knowledge, these are the first such estimates without assuming smallness of first derivatives of the defining map. An immediate application is a convergence theorem of the mean curvature flow of the graph of an area decreasing map between flat Riemann surfaces.
引用
收藏
页码:7763 / 7775
页数:13
相关论文
共 50 条
  • [41] Minimal Graphs and Graphical Mean Curvature Flow in Mn x R
    McGonagle, Matthew
    Xiao, Ling
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 2189 - 2224
  • [42] Curvature estimates for submanifolds with prescribed Gauss image and mean curvature
    Y. L. Xin
    Calculus of Variations and Partial Differential Equations, 2010, 37 : 385 - 405
  • [43] INTERIOR CURVATURE ESTIMATES FOR HYPERSURFACES OF PRESCRIBED MEAN-CURVATURE
    ECKER, K
    HUISKEN, G
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (04): : 251 - 260
  • [44] Gradient estimates for mean curvature flow with Neumann boundary conditions
    Masashi Mizuno
    Keisuke Takasao
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [45] Gradient estimates for mean curvature flow with Neumann boundary conditions
    Mizuno, Masashi
    Takasao, Keisuke
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [46] Interior gradient estimates for anisotropic mean-curvature flow
    Clutterbuck, Julie
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) : 119 - 136
  • [47] Gradient estimates for mean curvature systems
    Wang, MT
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ABSTRACT AND APPLIED ANALYSIS, 2004, : 385 - 392
  • [48] Mean Curvature Flow with Triple Junctions in Higher Space Dimensions
    Daniel Depner
    Harald Garcke
    Yoshihito Kohsaka
    Archive for Rational Mechanics and Analysis, 2014, 211 : 301 - 334
  • [49] Mean Curvature Flow with Triple Junctions in Higher Space Dimensions
    Depner, Daniel
    Garcke, Harald
    Kohsaka, Yoshihito
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (01) : 301 - 334
  • [50] MEAN CURVATURE FLOW OF COMPACT SPACELIKE SUBMANIFOLDS IN HIGHER CODIMENSION
    Guilfoyle, Brendan
    Klingenberg, Wilhelm
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) : 6263 - 6281