CURVATURE DECAY ESTIMATES OF GRAPHICAL MEAN CURVATURE FLOW IN HIGHER CODIMENSIONS

被引:8
|
作者
Smoczyk, Knut [1 ,2 ]
Tsui, Mao-Pei [3 ,4 ]
Wang, Mu-Tao [5 ]
机构
[1] Leibniz Univ Hannover, Inst Differentialgeometrie, Welfengarten 1, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Welfengarten 1, D-30167 Hannover, Germany
[3] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[4] Univ Toledo, Dept Math & Stat, 2801 W Bancroft St, Toledo, OH 43606 USA
[5] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Mean curvature flow; MAPS; EXISTENCE; EVOLUTION; SURFACES;
D O I
10.1090/tran/6624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive pointwise curvature estimates for graphical mean curvature flows in higher codimensions for a flat ambient space. To the best of our knowledge, these are the first such estimates without assuming smallness of first derivatives of the defining map. An immediate application is a convergence theorem of the mean curvature flow of the graph of an area decreasing map between flat Riemann surfaces.
引用
收藏
页码:7763 / 7775
页数:13
相关论文
共 50 条