Software to convert terrestrial LiDAR scans of natural environments into photorealistic meshes

被引:20
|
作者
Risse, Benjamin [1 ]
Mangan, Michael [2 ]
Stuerzl, Wolfgang [3 ]
Webb, Barbara [1 ]
机构
[1] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Lincoln, Lincoln Ctr Autonomous Syst, Lincoln LN6 7TS, England
[3] Deutsch Zent Luft & Raumfahrt DLR, Inst Robot & Mechatron, Munchener Str 20, D-82234 Oberpfaffenhofen, Germany
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
MODEL; SCALE; DENSITY; VOLUME; TREES;
D O I
10.1016/j.envsoft.2017.09.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The introduction of 3D scanning has strongly influenced environmental sciences. If the resulting point clouds can be transformed into polygon meshes, a vast range of visualisation and analysis tools can be applied. But extracting accurate meshes from large point clouds gathered in natural environments is not trivial, requiring a suite of customisable processing steps. We present Habitat3D, an open source software tool to generate photorealistic meshes from registered point clouds of natural outdoor scenes. We demonstrate its capability by extracting meshes of different environments: 8,800 m(2) grassland featuring several Eucalyptus trees (combining 9 scans and 41,989,885 data points); 1,018 m(2) desert densely covered by vegetation (combining 56 scans and 192,223,621 data points); a well-structured garden; and a rough, volcanic surface. The resultant reconstructions accurately preserve all spatial features with millimetre accuracy whilst reducing the memory load by up to 98.5%. This enables rapid visualisation of the environments using off-the-shelf game engines and graphics hardware. Crown Copyright (C) 2017 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 50 条
  • [31] Towards Photorealistic and Immersive Virtual-reality Environments for Simulated Prosthetic Vision: Integrating Recent Breakthroughs in Consumer Hardware and Software
    Zapf, Marc P.
    Matteucci, Paul B.
    Lovell, Nigel H.
    Zheng, Steven
    Suaning, Gregg J.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 2597 - 2600
  • [32] Comparison of Kinect and Terrestrial LiDAR Capturing Natural Karst Cave 3-D Objects
    Haemmerle, Martin
    Hoefle, Bernhard
    Fuchs, Johannes
    Schroeder-Ritzrau, Andrea
    Vollweiler, Nicole
    Frank, Norbert
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1896 - 1900
  • [33] Intelligent Software Development Environments: Integrating Natural Language Processing with the Eclipse Platform
    Witte, Rene
    Sateli, Bahar
    Khamis, Ninus
    Rilling, Juergen
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 6657 : 408 - 419
  • [34] Most probable number quantification of hypophosphite and phosphite oxidizing bacteria in natural aquatic and terrestrial environments
    Stone, Brandee L.
    White, Andrea K.
    ARCHIVES OF MICROBIOLOGY, 2012, 194 (03) : 223 - 228
  • [35] Most probable number quantification of hypophosphite and phosphite oxidizing bacteria in natural aquatic and terrestrial environments
    Brandee L. Stone
    Andrea K. White
    Archives of Microbiology, 2012, 194 : 223 - 228
  • [36] THE NATURAL DURABILITY OF SELECTED INDONESIAN TIMBERS EXPOSED IN TERRESTRIAL AND MARINE ENVIRONMENTS AND UNDER LABORATORY CONDITIONS
    SUHIRMAN
    EATON, RA
    MATERIAL UND ORGANISMEN, 1984, 19 (04): : 291 - 313
  • [37] Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments
    Vizzo, Ignacio Vizzo
    Mersch, Benedikt
    Marcuzzi, Rodrigo
    Wiesmann, Louis
    Behley, Jens
    Stachniss, Cyrill
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 8534 - 8541
  • [38] Long-term vehicle localization in urban environments based on pole landmarks extracted from 3-D lidar scans
    Schaefer, Alexander
    Buescher, Daniel
    Vertens, Johan
    Luft, Lukas
    Burgard, Wolfram
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2021, 136 (136)
  • [39] Wild-Places: A Large-Scale Dataset for Lidar Place Recognition in Unstructured Natural Environments
    Knights, Joshua
    Vidanapathirana, Kavisha
    Ramezani, Milad
    Sridharan, Sridha
    Fookes, Clinton
    Moghadam, Peyman
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 11322 - 11328
  • [40] Tracking People in a Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for Security in Cluttered Environments
    Manuel Guerrero-Higueras, Angel
    Alvarez-Aparicio, Claudia
    Calvo Olivera, Maria Carmen
    Rodriguez-Lera, Francisco J.
    Fernandez-Llamas, Camino
    Martin Rico, Francisco
    Matellan, Vicente
    FRONTIERS IN NEUROROBOTICS, 2019, 12