The covering spectrum of a compact length space

被引:0
|
作者
Sormani, C [1 ]
Wei, GF
机构
[1] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new spectrum for compact length spaces and Riemannian manifolds called the "covering spectrum" which roughly measures the size of the one dimensional holes in the space. More specifically, the covering spectrum is a set of real numbers delta > 0 which identify the distinct 6 covers of the space. We investigate the relationship between this covering spectrum, the length spectrum, the marked length spectrum and the Laplace spectrum. We analyze the behavior of the covering spectrum under Gromov-Hausdorff convergence and study its gap phenomenon.
引用
收藏
页码:35 / 77
页数:43
相关论文
共 50 条
  • [41] Covering R with translates of a compact set
    Darji, UB
    Keleti, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) : 2593 - 2596
  • [42] Covering maps of spaces of compact subsets
    Gel'man, B. D.
    Zhukovskii, S. E.
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 539 - 544
  • [43] STABLE SPLITTINGS OF THE DUAL SPECTRUM OF THE CLASSIFYING SPACE OF A COMPACT LIE GROUP
    LEE, CN
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 331 (01) : 77 - 111
  • [44] Hubble Space Telescope imaging of compact steep spectrum radio sources
    deVries, WH
    ODea, CP
    Baum, SA
    Sparks, WB
    Biretta, J
    deKoff, S
    Golombek, D
    Lehnert, MD
    Macchetto, F
    McCarthy, P
    Miley, GK
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1997, 110 (02): : 191 - 211
  • [45] Covering group theory for compact groups
    Berestovskii, V
    Plaut, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 161 (03) : 255 - 267
  • [46] Covering compact metric spaces greedily
    Rolfes, J. H.
    Vallentin, F.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (01) : 130 - 140
  • [47] Covering compact metric spaces greedily
    J. H. Rolfes
    F. Vallentin
    Acta Mathematica Hungarica, 2018, 155 : 130 - 140
  • [48] REMARKS ON COMPACT-COVERING MAPPINGS
    ALSTER, K
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (02): : 141 - &
  • [49] ON COMPACT-COVERING AND SEQUENCE-COVERING IMAGES OF METRIC SPACES
    Zhang, Jing
    MATEMATICKI VESNIK, 2012, 64 (02): : 97 - 107
  • [50] Countable-compact-covering maps and compact-covering maps (vol 58, pg 127, 1994)
    Vaughan, JE
    TOPOLOGY AND ITS APPLICATIONS, 1995, 67 (03) : 231 - 231