The covering spectrum of a compact length space

被引:0
|
作者
Sormani, C [1 ]
Wei, GF
机构
[1] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new spectrum for compact length spaces and Riemannian manifolds called the "covering spectrum" which roughly measures the size of the one dimensional holes in the space. More specifically, the covering spectrum is a set of real numbers delta > 0 which identify the distinct 6 covers of the space. We investigate the relationship between this covering spectrum, the length spectrum, the marked length spectrum and the Laplace spectrum. We analyze the behavior of the covering spectrum under Gromov-Hausdorff convergence and study its gap phenomenon.
引用
收藏
页码:35 / 77
页数:43
相关论文
共 50 条
  • [21] On geodesic extendibility and the space of compact balls of length spaces
    Waldemar Barrera
    Luis M. Montes de Oca
    Didier A. Solis
    Monatshefte für Mathematik, 2021, 196 : 233 - 251
  • [22] On a distance defined by the length spectrum on Teichmuller space
    Shiga, H
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2003, 28 (02) : 315 - 326
  • [23] ISOMORPHIC SPECTRUM AND ISOMORPHIC LENGTH OF A BANACH SPACE
    Fotiy, O.
    Ostrovskii, M.
    Popov, M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) : 88 - 93
  • [24] Length spectrum characterization of asymptotic Teichmuller space
    Hu, Jun
    Jimenez-Lopez, Francisco G.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (01): : 73 - 91
  • [25] Length spectrum of circles in a complex projective space
    Adachi, T
    Maeda, S
    OSAKA JOURNAL OF MATHEMATICS, 1998, 35 (03) : 553 - 565
  • [26] DETERMINATION OF INDUCED REPRESENTATION SPECTRUM ON COMPACT SYMMETRIC SPACE
    DZYADYK, YV
    DOKLADY AKADEMII NAUK SSSR, 1975, 220 (05): : 1019 - 1022
  • [27] On the inclusion of the quasiconformal Teichmiller space into the length-spectrum Teichmiller space
    Alessandrini, D.
    Liu, L.
    Papadopoulos, A.
    Su, W.
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 165 - 189
  • [28] Distribution of length spectrum of circles on a complex hyperbolic space
    Adachi, T
    NAGOYA MATHEMATICAL JOURNAL, 1999, 153 : 119 - 140
  • [29] Length spectrum in rank one symmetric space is not arithmetic
    Kim, Inkang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) : 3691 - 3696
  • [30] Length spectrum characterization of asymptotic Teichmüller space
    Jun Hu
    Francisco G. Jimenez-Lopez
    Monatshefte für Mathematik, 2018, 186 : 73 - 91