Electronic and thermoelectric properties of group IV-VI van der Waals heterostructures

被引:9
|
作者
Rahim, A. [1 ]
Haider, W. [1 ]
Khan, A. [2 ]
Khan, Hamdullah [3 ]
Din, H. U. [4 ]
Shafiq, M. [5 ]
Amin, B. [5 ]
Idrees, M. [5 ]
机构
[1] Hazara Univ, Dept Phys, Mansehra 21300, Pakistan
[2] Abbottabad Univ Sci & Technol, Dept Comp Sci, Abbottabad 22010, Pakistan
[3] BUITEMS, Dept Phys, Quetta, Pakistan
[4] Bacha Khan Univ, Dept Phys, Charsadda, Pakistan
[5] Abbottabad Univ Sci & Technol, Dept Phys, Havelian, Abbottabad, Pakistan
关键词
First principles; Heterobilayer; Nanoelectronics; Two-dimensional materials; GRAPHENE;
D O I
10.1007/s10825-022-01894-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Stacking of two-dimensional materials, in the form of heterostructures, is recently considered as a promising candidate for thermoelectric devices application because it can combine the advantages of the individual 2D materials. The structural, electronic, and thermoelectric properties of group IV-VI [AB/XY (A = Ge, B = O, S, Se, Te, X = C, Sn, Si, Sn, and Y = Se, S)] van der Waals heterostructures are investigated by using first principles calculations. Binding energies and thermal stability showed that all heterobilayers are energetically and thermally stable. Calculated electronic band structure confirmed that IV-VI [AB/XY (A = Ge, B = O, S, Se, Te, X = C, Sn, Si, Sn, and Y = Se, S)] van der Waals heterostructures have indirect with type-II band alignment, which is crucial for separation of photogenerated carriers in solar cell device applications. Transport coefficients including Seebeck coefficient, electrical conductivity and power factor versus chemical potential are calculated by using Boltzmann transport theory which is implemented in BoltzTrap code. Among these heterobilayers, GeO/CSe has considerably large power factor at 800 K, making it more promising for good thermoelectric purposes. These findings pave the way for designing future electronic and thermoelectric devices.
引用
收藏
页码:725 / 732
页数:8
相关论文
共 50 条
  • [31] Electronic Properties of h-BCN-Blue Phosphorene van der Waals Heterostructures
    Kaewmaraya, Thanayut
    Srepusharawoot, Pornjuk
    Hussian, Tanveer
    Amornkitbamrung, Vittaya
    CHEMPHYSCHEM, 2018, 19 (05) : 612 - 618
  • [32] Thermoelectric properties of orthorhombic group IV-VI monolayers from the first-principles calculations
    Guo, San-Dong
    Wang, Yue-Hua
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (03)
  • [33] Electronic and magnetic properties of van der Waals ferromagnetic semiconductor VI3
    Wang, Yun-Peng
    Long, Meng-Qiu
    PHYSICAL REVIEW B, 2020, 101 (02)
  • [34] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    Nature Reviews Materials, 1
  • [35] Photovoltaics in Van der Waals Heterostructures
    Furchi, Marco M.
    Zechmeister, Armin A.
    Hoeller, Florian
    Wachter, Stefan
    Pospischil, Andreas
    Mueller, Thomas
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (01) : 106 - 116
  • [36] Structural, electronic and thermoelectric properties of GeC and MXO (M = Ti, Zr and X = S, Se) monolayers and their van der Waals heterostructures
    Bashir, Khadeeja
    Bilal, M.
    Amin, B.
    Chen, Yuanping
    Idrees, M.
    RSC ADVANCES, 2023, 13 (14) : 9624 - 9635
  • [37] Frustrated van der Waals heterostructures
    Tawfik, Sherif Abdulkader
    NANOSCALE, 2024, 16 (44) : 20484 - 20488
  • [38] Van der Waals heterostructures and devices
    Liu, Yuan
    Weiss, Nathan O.
    Duan, Xidong
    Cheng, Hung-Chieh
    Huang, Yu
    Duan, Xiangfeng
    NATURE REVIEWS MATERIALS, 2016, 1 (09):
  • [39] Polaritons in Van der Waals Heterostructures
    Guo, Xiangdong
    Lyu, Wei
    Chen, Tinghan
    Luo, Yang
    Wu, Chenchen
    Yang, Bei
    Sun, Zhipei
    de Abajo, F. Javier Garcia
    Yang, Xiaoxia
    Dai, Qing
    ADVANCED MATERIALS, 2023, 35 (17)
  • [40] Electronic properties and interfacial contact of graphene/CrSiTe3 van der Waals heterostructures
    Chen, Li
    Jiang, Chuan
    Yang, Maoyou
    Wang, Dongchao
    Shi, Changmin
    Liu, Hongmei
    Cui, Guangliang
    Li, Xiaolong
    Shi, Jiakuo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (07) : 4280 - 4286