Van der Waals heterostructures and devices

被引:1781
|
作者
Liu, Yuan [1 ]
Weiss, Nathan O. [1 ]
Duan, Xidong [2 ]
Cheng, Hung-Chieh [1 ]
Huang, Yu [1 ,4 ]
Duan, Xiangfeng [3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
来源
NATURE REVIEWS MATERIALS | 2016年 / 1卷 / 09期
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
HEXAGONAL BORON-NITRIDE; TRANSITION-METAL DICHALCOGENIDES; FIELD-EFFECT TRANSISTOR; LIGHT-EMITTING-DIODES; P-N-JUNCTIONS; CHARGE-TRANSFER; VERTICAL HETEROSTRUCTURE; PHOTOCURRENT GENERATION; GRAPHENE PHOTODETECTOR; LAYERED MATERIALS;
D O I
10.1038/natrevmats.2016.42
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional layered materials (2DLMs) have been a central focus of materials research since the discovery of graphene just over a decade ago. Each layer in 2DLMs consists of a covalently bonded, dangling-bond-free lattice and is weakly bound to neighbouring layers by van der Waals interactions. This makes it feasible to isolate, mix and match highly disparate atomic layers to create a wide range of van der Waals heterostructures (vdWHs) without the constraints of lattice matching and processing compatibility. Exploiting the novel properties in these vdWHs with diverse layering of metals, semiconductors or insulators, new designs of electronic devices emerge, including tunnelling transistors, barristors and flexible electronics, as well as optoelectronic devices, including photodetectors, photovoltaics and light-emitting devices with unprecedented characteristics or unique functionalities. We review the recent progress and challenges, and offer our perspective on the exploration of 2DLM-based vdWHs for future application in electronics and optoelectronics.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    [J]. Nature Reviews Materials, 1
  • [2] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    [J]. Journal of Semiconductors, 2017, 38 (03) : 48 - 56
  • [3] Memory Devices Based on Van der Waals Heterostructures
    Liu, Chunsen
    Zhou, Peng
    [J]. ACS MATERIALS LETTERS, 2020, 2 (09): : 1101 - 1105
  • [4] Gapless van der Waals Heterostructures for Infrared Optoelectronic Devices
    Wen, Yao
    He, Peng
    Wang, Qisheng
    Yao, Yuyu
    Zhang, Yu
    Hussain, Sabir
    Wang, Zhenxing
    Cheng, Ruiqing
    Yin, Lei
    Sendeku, Marshet Getaye
    Wang, Feng
    Jiang, Chao
    He, Jun
    [J]. ACS NANO, 2019, 13 (12) : 14519 - 14528
  • [5] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [6] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [7] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    [J]. Nature, 2013, 499 : 419 - 425
  • [8] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2
  • [9] Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics
    Ciarrocchi, Alberto
    Tagarelli, Fedele
    Avsar, Ahmet
    Kis, Andras
    [J]. NATURE REVIEWS MATERIALS, 2022, 7 (06) : 449 - 464
  • [10] Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics
    Alberto Ciarrocchi
    Fedele Tagarelli
    Ahmet Avsar
    Andras Kis
    [J]. Nature Reviews Materials, 2022, 7 : 449 - 464