Convergence of the mixed finite element method for Maxwell's equations with nonlinear conductivity

被引:9
|
作者
Durand, S. [1 ]
Slodicka, M. [1 ]
机构
[1] Univ Ghent, Res Grp Numer Anal & Math Modelling, Dept Math Anal, B-9000 Ghent, Belgium
关键词
finite elements; Maxwell's equations; convergence; error estimates; quasi-static limit; TIME-DISCRETIZATION SCHEME; II SUPERCONDUCTORS; BOUNDARY-CONDITION; DOMAINS; LIMIT;
D O I
10.1002/mma.2513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a numerical scheme to solve coupled Maxwell's equations with a nonlinear conductivity. This model plays an important role in the study of type-II superconductors. The approximation scheme is based on backward Euler discretization in time and mixed conforming finite elements in space. We will prove convergence of this scheme to the unique weak solution of the problem and develop the corresponding error estimates. As a next step, we study the stability of the scheme in the quasi-static limit epsilon -> 0 and present the corresponding convergence rate. Finally, we support the theory by several numerical experiments. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1489 / 1504
页数:16
相关论文
共 50 条
  • [31] Spurious solutions in mixed finite element method for Maxwell's equations: Dispersion analysis and new basis functions
    Tobon, Luis
    Chen, Jiefu
    Liu, Qing Huo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7300 - 7310
  • [32] Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations
    He, Bin
    Yang, Wei
    Wang, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [33] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 363 - 386
  • [34] ANALYSIS OF A FINITE-ELEMENT METHOD FOR MAXWELL EQUATIONS
    MONK, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) : 714 - 729
  • [35] FINITE-ELEMENT METHOD APPLIED TO MAXWELL EQUATIONS
    HILLION, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (05): : 323 - 325
  • [36] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Lin Mu
    Junping Wang
    Xiu Ye
    Shangyou Zhang
    Journal of Scientific Computing, 2015, 65 : 363 - 386
  • [37] CONVERGENCE AND STABILITY OF NONLINEAR FINITE-ELEMENT EQUATIONS
    CHUNG, TJ
    AIAA JOURNAL, 1975, 13 (07) : 963 - 966
  • [38] Weighted edge finite element method for Maxwell’s equations with strong singularity
    V. A. Rukavishnikov
    A. O. Mosolapov
    Doklady Mathematics, 2013, 87 : 156 - 159
  • [39] Convergence of Explicit P1 Finite-Element Solutions to Maxwell's Equations
    Beilina, Larisa
    Ruas, V.
    MATHEMATICAL AND NUMERICAL APPROACHES FOR MULTI-WAVE INVERSE PROBLEMS, CIRM, 2020, 328 : 91 - 103
  • [40] Weighted edge finite element method for Maxwell's equations with strong singularity
    Rukavishnikov, V. A.
    Mosolapov, A. O.
    DOKLADY MATHEMATICS, 2013, 87 (02) : 156 - 159