Android malware detection based on image-based features and machine learning techniques

被引:33
|
作者
Unver, Halil Murat [1 ]
Bakour, Khaled [1 ]
机构
[1] Kirikkale Univ, Dept Comp Engn, Kirikkale, Turkey
来源
SN APPLIED SCIENCES | 2020年 / 2卷 / 07期
关键词
Android malware; Image local feature; Image global feature; Malware visualization; PATTERNS;
D O I
10.1007/s42452-020-3132-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a malware classification model has been proposed for detecting malware samples in the Android environment. The proposed model is based on converting some files from the source of the Android applications into grayscale images. Some image-based local features and global features, including four different types of local features and three different types of global features, have been extracted from the constructed grayscale image datasets and used for training the proposed model. To the best of our knowledge, this type of features is used for the first time in the Android malware detection domain. Moreover, the bag of visual words algorithm has been used to construct one feature vector from the descriptors of the local feature extracted from each image. The extracted local and global features have been used for training multiple machine learning classifiers including Random forest, k-nearest neighbors, Decision Tree, Bagging, AdaBoost and Gradient Boost. The proposed method obtained a very high classification accuracy reached 98.75% with a typical computational time does not exceed 0.018 s for each sample. The results of the proposed model outperformed the results of all compared state-of-art models in term of both classification accuracy and computational time.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Towards a Reliable Hierarchical Android Malware Detection Through Image-based CNN
    Geremias, Jhonatan
    Viegas, Eduardo K.
    Santin, Altair O.
    Britto, Alceu
    Horchulhack, Pedro
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [32] A two-stage deep learning framework for image-based android malware detection and variant classification
    Yadav, Pooja
    Menon, Neeraj
    Ravi, Vinayakumar
    Vishvanathan, Sowmya
    Pham, Tuan D.
    COMPUTATIONAL INTELLIGENCE, 2022, 38 (05) : 1748 - 1771
  • [33] Android Malware Detection Using Machine Learning on Image Patterns
    Darus, Falai Mohd
    Salleh, Noor Azurati Alimad
    Ariffin, Aswami Fadillah Mohd
    PROCEEDINGS OF THE 2018 CYBER RESILIENCE CONFERENCE (CRC), 2018,
  • [34] A Survey of Android Malware Static Detection Technology Based on Machine Learning
    Wu, Qing
    Zhu, Xueling
    Liu, Bo
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [35] Evaluation of Tree Based Machine Learning Classifiers for Android Malware Detection
    Rana, Md. Shohel
    Rahman, Sheikh Shah Mohammad Motiur
    Sung, Andrew H.
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2018, PT II, 2018, 11056 : 377 - 385
  • [36] On the Evaluation of the Machine Learning Based Hybrid Approach for Android Malware Detection
    Ratyal, Natasha Javed
    Khadam, Maryam
    Aleem, Muhammad
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 100 - 107
  • [37] Android Malware Detection Based on Factorization Machine
    Li, Chenglin
    Mills, Keith
    Niu, Di
    Zhu, Rui
    Zhang, Hongwen
    Kinawi, Husam
    IEEE ACCESS, 2019, 7 : 184008 - 184019
  • [38] Permissions-Based Detection of Android Malware Using Machine Learning
    Akbar, Fahad
    Hussain, Mehdi
    Mumtaz, Rafia
    Riaz, Qaiser
    Wahab, Ainuddin Wahid Abdul
    Jung, Ki-Hyun
    SYMMETRY-BASEL, 2022, 14 (04):
  • [39] An in-depth review of machine learning based Android malware detection
    Muzaffar, Ali
    Hassen, Hani Ragab
    Lones, Michael A.
    Zantout, Hind
    COMPUTERS & SECURITY, 2022, 121
  • [40] Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection
    Nadia Daoudi
    Kevin Allix
    Tegawendé F. Bissyandé
    Jacques Klein
    Empirical Software Engineering, 2021, 26