Ziv-Zakai Bound for Compressive Time Delay Estimation

被引:19
|
作者
Zhang, Zongyu [1 ]
Shi, Zhiguo [1 ,2 ]
Zhou, Chengwei [1 ]
Yan, Chenggang [3 ]
Gu, Yujie [4 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Int Joint Innovat Ctr, Haining 314400, Peoples R China
[3] Hangzhou Dianzi Univ, Dept Automat, Hangzhou 310018, Peoples R China
[4] Aptiv, Elect & Safety, Agoura Hills, CA 91301 USA
基金
中国国家自然科学基金;
关键词
Bayesian estimation; compressive sensing; mean square error; minimum probability of error; time delay estimation; Ziv-Zakai bound; PARAMETER-ESTIMATION; ESTIMATION ERROR; BAYESIAN BOUNDS; MIMO RADAR; OPTIMIZATION; INFORMATION;
D O I
10.1109/TSP.2022.3181459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive radar receiver can keep a good balance between sub-Nyquist sampling and high resolution. To evaluate the performance of compressive time delay estimators, Cramer-Rao bound (CRB) has been derived for lower bounding the mean square error (MSE), which, unfortunately, is a local bound being tight in the asymptotic region only. In this paper, we use the Ziv-Zakai bound (ZZB) methodology to develop a Bayesian MSE bound on compressive time delay estimation by incorporating the a priori information of the unknown time delay. Specifically, we respectively derive deterministic ZZB and stochastic ZZB as functions of compressive sensing (CS) kernel, where there is no restriction on CS kernels and Gaussian noise colors. Simulation results demonstrate that compared with Bayesian CRB, ZZB provides a better performance prediction for minimum MSE estimator of compressive time delay estimation over a wide range of signal-to-noise ratios, where different CS kernels, compression ratios, a priori distributions and Gaussian noise colors are tested.
引用
收藏
页码:4006 / 4019
页数:14
相关论文
共 50 条
  • [31] Generalized limits for parameter sensitivity via quantum Ziv-Zakai bound
    Gao, Yang
    Lee, Hwang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (41)
  • [32] Ziv-Zakai Bounds on Image Registration
    Xu, Min
    Chen, Hao
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (05) : 1745 - 1755
  • [33] Ziv-Zakai bound for harmonic retrieval in multiplicative and additive Gaussian noise
    Ciblat, Philippe
    Ghogho, Mounir
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 517 - 522
  • [34] Direction of Arrival Estimation with Hybrid Digital Analog Arrays: Algorithms and Ziv-Zakai Lower Bound
    Rivas-Costa, Miguel
    Mosquera, Carlos
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 1329 - 1333
  • [35] Ziv-Zakai Time-Delay Estimation Bounds for Frequency-Hopping Waveforms Under Frequency-Selective Fading
    Liu, Ning
    Xu, Zhengyuan
    Sadler, Brian M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (12) : 6400 - 6406
  • [36] SNR-Adaptive Ranging Waveform Design Based on Ziv-Zakai Bound Optimization
    Xiong, Yifeng
    Liu, Fan
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1427 - 1431
  • [37] Trade-Off Between Positioning and Communication for Millimeter Wave Systems With Ziv-Zakai Bound
    Sun, Junchang
    Ma, Shuai
    Xu, Gang
    Li, Shiyin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (06) : 3752 - 3762
  • [38] Ziv-Zakai Bound and Multicorrelator Compression for a Galileo E1 Meta-Signal
    Schwalm, Carolin
    Enneking, Christoph
    Thoelert, Steffen
    2020 EUROPEAN NAVIGATION CONFERENCE (ENC), 2020,
  • [39] Performance Analysis and Design of Position-Encoded Microsphere Arrays Using the Ziv-Zakai Bound
    Xu, Xiaoxiao
    Sarder, Pinaki
    Kotagiri, Nalinikanth
    Achilefu, Samuel
    Nehorai, Arye
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2013, 12 (01) : 29 - 40
  • [40] Ziv-Zakai Lower Bound for Impulse Radio Ultra-WideBand Ranging Error Correlation Matrix
    Zhan, Hai
    Le Boudec, Jean-Yves
    Farserotu, John
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,