Ziv-Zakai Bound for Compressive Time Delay Estimation

被引:19
|
作者
Zhang, Zongyu [1 ]
Shi, Zhiguo [1 ,2 ]
Zhou, Chengwei [1 ]
Yan, Chenggang [3 ]
Gu, Yujie [4 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Int Joint Innovat Ctr, Haining 314400, Peoples R China
[3] Hangzhou Dianzi Univ, Dept Automat, Hangzhou 310018, Peoples R China
[4] Aptiv, Elect & Safety, Agoura Hills, CA 91301 USA
基金
中国国家自然科学基金;
关键词
Bayesian estimation; compressive sensing; mean square error; minimum probability of error; time delay estimation; Ziv-Zakai bound; PARAMETER-ESTIMATION; ESTIMATION ERROR; BAYESIAN BOUNDS; MIMO RADAR; OPTIMIZATION; INFORMATION;
D O I
10.1109/TSP.2022.3181459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive radar receiver can keep a good balance between sub-Nyquist sampling and high resolution. To evaluate the performance of compressive time delay estimators, Cramer-Rao bound (CRB) has been derived for lower bounding the mean square error (MSE), which, unfortunately, is a local bound being tight in the asymptotic region only. In this paper, we use the Ziv-Zakai bound (ZZB) methodology to develop a Bayesian MSE bound on compressive time delay estimation by incorporating the a priori information of the unknown time delay. Specifically, we respectively derive deterministic ZZB and stochastic ZZB as functions of compressive sensing (CS) kernel, where there is no restriction on CS kernels and Gaussian noise colors. Simulation results demonstrate that compared with Bayesian CRB, ZZB provides a better performance prediction for minimum MSE estimator of compressive time delay estimation over a wide range of signal-to-noise ratios, where different CS kernels, compression ratios, a priori distributions and Gaussian noise colors are tested.
引用
收藏
页码:4006 / 4019
页数:14
相关论文
共 50 条
  • [21] Ziv-Zakai Bound for Joint Parameter Estimation in MIMO Radar Systems
    Chiriac, Vlad M.
    He, Qian
    Haimovich, Alexander M.
    Blum, Rick S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4956 - 4968
  • [22] MODIFIED ZIV-ZAKAI BOUND FOR TIME-OF-ARRIVAL ESTIMATION OF GNSS SIGNAL-IN-SPACE
    Emmanuele, Andrea
    Luise, Marco
    Zanier, Francesca
    Crisci, Massimo
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3041 - 3044
  • [23] ZIV-ZAKAI LOWER BOUND FOR UWB BASED TOA ESTIMATION WITH UNKNOWN INTERFERENCE
    Amigo, Adria Gusi
    Closas, Pau
    Mallat, Achraf
    Vandendorpe, Luc
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [24] High-Noise Asymptotics of the Ziv-Zakai Bound
    Dytso, Alex
    Cardone, Martina
    Zieder, Ian
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1933 - 1937
  • [25] ZIV-ZAKAI LOWER BOUND FOR UWB BASED TOA ESTIMATION WITH MULTIUSER INTERFERENCE
    Amigo, Adria Gusi
    Vandendorpe, Luc
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 4933 - 4937
  • [26] Ziv-Zakai Bound for Target Parameter Estimation in Distributed MIMO Radar Systems
    Liang, Yuanyuan
    Wen, Gongjian
    Luo, Dengsanlang
    Li, Runzhi
    Li, Boyun
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 7393 - 7410
  • [27] Explicit Ziv-Zakai bound for analysis of DOA estimation performance of sparse linear arrays
    Khan, Diba
    Bell, Kristine L.
    SIGNAL PROCESSING, 2013, 93 (12) : 3449 - 3458
  • [28] ZIV-ZAKAI BOUNDS FOR TIME DELAY ESTIMATION WITH FREQUENCY HOPPING AND MULTICARRIER SIGNALS IN WIDEBAND RANDOM CHANNELS
    Sadler, Brian M.
    Liu, Ning
    Xu, Zhengyuan
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2570 - 2573
  • [29] Ziv-Zakai Error Bounds for Quantum Parameter Estimation
    Tsang, Mankei
    PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [30] Analysis of DOA Estimation Performance of Sparse Linear Arrays Using the Ziv-Zakai Bound
    Khan, Diba
    Bell, Kristine L.
    2010 IEEE RADAR CONFERENCE, 2010, : 746 - 751