Thermo-Electric Energy Storage involving CO2 transcritical ground heat storage

被引:53
|
作者
Ayachi, Fadhel [1 ]
Tauveron, Nicolas [1 ]
Tartiere, Thomas [2 ]
Colasson, Stephane [1 ]
Nguyen, Denis [3 ]
机构
[1] CEA, LITEN DTBH SBRT LS2T, 17 Rue Martyrs, F-38054 Grenoble, France
[2] Enertime, 1 Rue Moulin Bruyeres, F-92400 Courbevoie, France
[3] BRGM Languedoc Roussillon, 1039 Rue Pinville, F-34000 Montpellier, France
关键词
Storage; CO2; Transcritical; Ground; Heat-pump; Rankine; ORGANIC RANKINE-CYCLE; THERMOECONOMIC ANALYSIS; THERMODYNAMIC CYCLES; DESIGN; OPTIMIZATION; RECOVERY; TEMPERATURE; GAS;
D O I
10.1016/j.applthermaleng.2016.07.063
中图分类号
O414.1 [热力学];
学科分类号
摘要
Multi-megawatt Thermo-Electric Energy Storage based on thermodynamic cycles is a promising alternative to PSH (Pumped-Storage Hydroelectricity) and CAES (Compressed Air Energy Storage) systems. The size and cost of the heat storage are the main drawbacks of this technology but using the ground as a heat reservoir could be an interesting and cheap solution. In that context, the aim of this work is (i) to assess the performance of a geothermal electricity storage concept based on CO2 transcritical cycles and ground heat exchanger, and (ii) to carry out the preliminary design of the whole system. This later includes a heat pump transcritical cycle as the charging process and a transcritical Rankine cycle of 1-10 MWel as the discharging process. A steady-state thermodynamic model is performed and several options, including heat regeneration, two-phase turbine and multi-stage design, are investigated. In addition, a one-dimensional model of the ground exchanger is performed and coupled to the thermodynamic model to optimize the number of wells for the ground heat storage. The results show a strong dependency between the charging and discharging processes and indicate how the use of heat regeneration in both processes could be advantageous. The results also measure the difference in performance between the basic and the advanced designs. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1418 / 1428
页数:11
相关论文
共 50 条
  • [21] Thermo-economic analysis of combined transcritical CO2 power cycle based on a novel liquefied-biomethane energy storage system
    Pan, Chuhan
    Lu, Fulu
    Zhu, Hongguang
    Pan, Fanghui
    Sun, Jiahui
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [22] Electrical energy storage using a supercritical CO2 heat pump
    Tafur-Escanta, Paul
    Valencia-Chapi, Robert
    Lopez-Guillem, Miguel
    Fierros-Peraza, Olmo
    Munoz-Anton, Javier
    ENERGY REPORTS, 2022, 8 : 502 - 507
  • [23] Energy cost of heat activating serpentinites for CO2 storage by mineralisation
    Balucan, Reydick D.
    Dlugogorski, Bogdan Z.
    Kennedy, Eric M.
    Belova, Irina V.
    Murch, Graeme E.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 17 : 225 - 239
  • [24] Thermal energy storage design of a new bifacial PV/PCM system for enhanced thermo-electric performance
    Akshayveer
    Kumar, Amit
    Singh, Ajeet Pratap
    Kotha, R. Sreeram
    Singh, O. P.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 250
  • [25] Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage
    Fiaschi, Daniele
    Manfrida, Giampaolo
    Petela, Karolina
    Rossi, Federico
    Sinicropi, Adalgisa
    Talluri, Lorenzo
    ENERGIES, 2020, 13 (13)
  • [26] Reducing ground subsidence involving geological CO2 storage during longwall mining operations
    Kempka, T.
    Waschbuesch, M.
    Azzam, R.
    Fernandez-Steeger, T. M.
    QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2008, 41 : 439 - 448
  • [27] Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system
    Peng, Yirui
    Gao, Jianmin
    Zhang, Yu
    Zhang, Jin
    Sun, Qiaoqun
    Du, Qian
    Tang, Zhipei
    Zhang, Tianhang
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [28] SNG based energy storage systems with subsurface CO2 storage
    Fogel, Stefan
    Yeates, Christopher
    Unger, Sebastian
    Rodriguez-Garcia, Gonzalo
    Baetcke, Lars
    Dornheim, Martin
    Schmidt-Hattenberger, Cornelia
    Bruhn, David
    Hampel, Uwe
    ENERGY ADVANCES, 2022, 1 (07): : 402 - 421
  • [29] Diversified development of CO2 in energy storage
    Zhang Zhang
    Linlin Zhao
    Zhaojun Xie
    Zhen Zhou
    Green Chemical Engineering, 2020, 1 (02) : 79 - 81
  • [30] SIMULATION AND EVALUATION OF CO2 HEAT PUMP SYSTEM WITH ENERGY STORAGE FOR ZEB
    Alonso, M. Justo
    Bantle, M.
    Claussen, I. C.
    3RD IIR INTERNATIONAL CONFERENCE ON SUSTAINABILITY AND THE COLD CHAIN, 2014, 2014 (01): : 158 - 165