Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system

被引:5
|
作者
Peng, Yirui [1 ]
Gao, Jianmin [1 ]
Zhang, Yu [1 ]
Zhang, Jin [1 ]
Sun, Qiaoqun [2 ]
Du, Qian [1 ]
Tang, Zhipei [1 ]
Zhang, Tianhang [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Sch Aerosp & Construct Engn, 145 Nan Tong St, Harbin 150001, Peoples R China
关键词
CompressedCO2 energy storage; Low-pressureCO2; storage; Adsorption storage system; Storage capacity; Density; Heat exchange efficiency; CARBON-DIOXIDE CAPTURE; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; RENEWABLE ENERGY; DYNAMIC SIMULATION; ZEOLITES; GAS; BIOCHAR;
D O I
10.1016/j.est.2022.106286
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Compressed CO2 energy storage is a reliable physical energy storage solution. The main challenge of compressed CO2 energy storage system is how to solve the high-density storage of low-pressure CO2. In this study, we proposed a new type of adsorption transcritical compressed CO2 energy storage system. We used adsorbents to adsorb CO2 for achieving low-pressure, high-density storage of low-pressure CO2. We investigated the gas storage capacity of the adsorption storage system and the heat and mass transfer process. Results demonstrate that the storage density (57.6 degrees C-25 degrees C) of adsorption gas storage is 43.46 kg/m3, which is 24.8 times of the CO2 density (1.75 kg/m3, 30 degrees C, 1 bar). If the adsorbents are heated above 160 degrees C, then the storage density will increase 3-4 times. The whole process is controlled by heat exchange efficiency. The heat exchange efficiency greatly affects the response time of the system during the application.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Integrating Compressed CO2 Energy Storage in an Integrated Energy System
    Huang, Qingxi
    Song, Yongxin
    Sun, Qie
    Ren, Xiaohan
    Wang, Wei
    ENERGIES, 2024, 17 (07)
  • [2] Dynamic operating characteristics of a compressed CO2 energy storage system
    Huang, Qingxi
    Feng, Biao
    Liu, Shengchun
    Ma, Cuiping
    Li, Hailong
    Sun, Qie
    APPLIED ENERGY, 2023, 341
  • [3] Design and development of an advanced gas storage device and control method for a novel compressed CO2 energy storage system
    Peng, Yirui
    Zhu, Ju
    Wang, Jia
    Zhang, Shuqi
    Du, Qian
    Dong, Heming
    Zhang, Yu
    Gao, Jianmin
    Xie, Min
    Renewable Energy, 2024, 237
  • [4] Water as Energy Storage Medium for CO2 Adsorption
    Gautam
    Sahoo, Satyabrata
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [5] Performance Analysis of a Transcritical Compressed CO2 Energy Storage System Based on Liquid Storage
    Wan Y.
    Wu C.
    Liu C.
    Fu Z.
    Jiang X.
    Xue X.
    He J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (01): : 25 - 33
  • [6] Experimental investigations of CO2 adsorption behavior in shales: Implication for CO2 geological storage
    Zheng, Sijian
    Sang, Shuxun
    Wang, Meng
    Liu, Shiqi
    Huang, Kai
    Feng, Guangjun
    Song, Yu
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [7] Performance of compressed CO2 energy storage systems with different liquefaction and storage scenarios
    Liu, Zhan
    Yan, Xuewen
    Wang, Song
    Wei, Xiaolong
    Zhang, Yao
    Ding, Jialu
    Su, Chuanqi
    FUEL, 2024, 359
  • [8] A novel transcritical CO2 energy storage system
    Wu Y.
    Hu D.
    Wang M.
    Dai Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2016, 50 (03): : 45 - 49and100
  • [9] Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid
    Zhang, Xin-Rong
    Wang, Guan-Bang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (10) : 1487 - 1503
  • [10] Experimental Study of the Injection System for CO2 Geologic Storage Demonstration
    Yoon, Seok Ho
    Lee, Kong Hoon
    Lee, Jungho
    Kim, Young
    Yum, Byoung-Woo
    GHGT-11, 2013, 37 : 3366 - 3373