Dunkl-Klein-Gordon Equation in Three-Dimensions: The Klein-Gordon Oscillator and Coulomb Potential

被引:24
|
作者
Hamil, B. [1 ]
Lutfuoglu, B. C. [2 ,3 ]
机构
[1] Univ Hassiba Benbouali, Dept TC SNV, Chlef, Algeria
[2] Akdeniz Univ, Dept Phys, TR-07058 Antalya, Turkey
[3] Univ Hradec Kralove, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
关键词
MINIMAL LENGTH UNCERTAINTY; OPERATORS;
D O I
10.1007/s00601-022-01776-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent studies show that deformations in quantum mechanics are inevitable. In this contribution, we consider a relativistic quantum mechanical differential equation in the presence of Dunkl operator-based deformation and we investigate solutions for two important problems in three-dimensional spatial space. To this end, after introducing the Dunkl quantum mechanics, we examine the Dunkl-Klein-Gordon oscillator solutions with the Cartesian and spherical coordinates. In both coordinate systems, we find that the differential equations are separable and their eigenfunctions can be given in terms of the associate Laguerre and Jacobi polynomials. We observe how the Dunkl formalism is affecting the eigenvalues as well as the eigenfunctions. As a second problem, we examine the Dunkl-Klein-Gordon equation with the Coulomb potential. We obtain the eigenvalue, their corresponding eigenfunctions, and the Dunkl-fine structure terms.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Klein-Gordon Equation with Superintegrable Systems: Kepler-Coulomb, Harmonic Oscillator, and Hyperboloid
    Mohammadi, V.
    Aghaei, S.
    Chenaghlou, A.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2015, 2015
  • [42] Klein-Gordon Equation with Double Ring Shaped Coulomb Potential via AIM
    Sur, S.
    Debnath, S.
    [J]. RECENT ADVANCES IN INTELLIGENT INFORMATION SYSTEMS AND APPLIED MATHEMATICS, 2020, 863 : 725 - 733
  • [43] SECOND-ORDER CORRECTIONS TO THE NONCOMMUTATIVE KLEIN-GORDON EQUATION WITH A COULOMB POTENTIAL
    Zaim, Slimane
    Khodja, Lamine
    Delenda, Yazid
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (23): : 4133 - 4144
  • [44] ONE-DIMENSIONAL KLEIN-GORDON EQUATION WITH COULOMB INTERACTION
    GOSTEV, VB
    PERESFERNANDES, VK
    FRENKIN, AR
    CHIZHOV, GA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1990, 33 (05): : 96 - 98
  • [45] LP Estimate for Klein-Gordon Equation with a Perturbed Potential
    穆春来
    [J]. Communications in Mathematical Research, 1995, (02) : 205 - 214
  • [46] Exact Solutions of the Klein-Gordon Equation with Hylleraas Potential
    Ikot, Akpan N.
    Awoga, Oladunjoye A.
    Ita, Benedict I.
    [J]. FEW-BODY SYSTEMS, 2012, 53 (3-4) : 539 - 548
  • [47] Analytical solutions of the Klein-Gordon equation with a combined potential
    Onate, C. A.
    Onyeaju, M. C.
    Ikot, A. N.
    Ojonubah, J. O.
    [J]. CHINESE JOURNAL OF PHYSICS, 2016, 54 (05) : 820 - 829
  • [48] An Ansatz Solution of Klein-Gordon Equation with Eckart Potential
    Hassanabadi, H.
    Yazarloo, B. H.
    Zarrinkamar, S.
    [J]. AFRICAN REVIEW OF PHYSICS, 2012, 7 : 301 - 304
  • [49] The Klein-Gordon equation with the Kratzer potential in the noncommutative space
    Darroodi, M.
    Mehraban, H.
    Hassanabadi, S.
    [J]. MODERN PHYSICS LETTERS A, 2018, 33 (35)
  • [50] Approximate Solutions of Klein-Gordon Equation with Kratzer Potential
    Hassanabadi, H.
    Rahimov, H.
    Zarrinkamar, S.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011