Dunkl-Klein-Gordon Equation in Three-Dimensions: The Klein-Gordon Oscillator and Coulomb Potential

被引:24
|
作者
Hamil, B. [1 ]
Lutfuoglu, B. C. [2 ,3 ]
机构
[1] Univ Hassiba Benbouali, Dept TC SNV, Chlef, Algeria
[2] Akdeniz Univ, Dept Phys, TR-07058 Antalya, Turkey
[3] Univ Hradec Kralove, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
关键词
MINIMAL LENGTH UNCERTAINTY; OPERATORS;
D O I
10.1007/s00601-022-01776-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent studies show that deformations in quantum mechanics are inevitable. In this contribution, we consider a relativistic quantum mechanical differential equation in the presence of Dunkl operator-based deformation and we investigate solutions for two important problems in three-dimensional spatial space. To this end, after introducing the Dunkl quantum mechanics, we examine the Dunkl-Klein-Gordon oscillator solutions with the Cartesian and spherical coordinates. In both coordinate systems, we find that the differential equations are separable and their eigenfunctions can be given in terms of the associate Laguerre and Jacobi polynomials. We observe how the Dunkl formalism is affecting the eigenvalues as well as the eigenfunctions. As a second problem, we examine the Dunkl-Klein-Gordon equation with the Coulomb potential. We obtain the eigenvalue, their corresponding eigenfunctions, and the Dunkl-fine structure terms.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] COULOMB EFFECTS IN THE KLEIN-GORDON EQUATION FOR PIONS
    COOPER, MD
    JEPPESEN, RH
    JOHNSON, MB
    [J]. PHYSICAL REVIEW C, 1979, 20 (02): : 696 - 704
  • [12] EXPONENTIAL POTENTIAL AND KLEIN-GORDON EQUATION
    BAWIN, M
    LAVINE, JP
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1974, A 23 (02): : 311 - 320
  • [13] Calculation of the Oscillator Strength for the Klein-Gordon Equation with Tietz Potential
    Lu, L. L.
    Yazarloo, B. H.
    Zarrinkamar, S.
    Liu, G.
    Hassanabadi, H.
    [J]. FEW-BODY SYSTEMS, 2012, 53 (3-4) : 573 - 581
  • [14] On the Supersymmetry of the Klein-Gordon Oscillator
    Junker, Georg
    [J]. SYMMETRY-BASEL, 2021, 13 (05):
  • [15] THE KLEIN-GORDON OSCILLATOR - COMMENT
    DVOEGLAZOV, VV
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (08): : 1413 - 1417
  • [16] On the 1D Coulomb Klein-Gordon equation
    Barton, G.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : 1011 - 1031
  • [17] MESON SPECTRA WITH A HARMONIC-OSCILLATOR POTENTIAL IN THE KLEIN-GORDON EQUATION
    RAM, B
    HALASA, R
    [J]. PHYSICAL REVIEW D, 1979, 19 (11): : 3467 - 3469
  • [18] Quaternionic Klein-Gordon equation
    Giardino, Sergio
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (06):
  • [19] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [20] KLEIN-GORDON EQUATION FOR SPINORS
    MARX, E
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (08) : 1559 - &