The water droplet with huge charge density excited by triboelectric nanogenerator for water sterilization

被引:20
|
作者
Luo, Hongchun [1 ]
Gu, Guangqin [1 ]
Shang, Wanyu [1 ]
Zhang, Wenhe [1 ]
Wang, Tingyu [1 ]
Cui, Peng [1 ]
Zhang, Bao [1 ]
Guo, Junmeng [1 ]
Cheng, Gang [1 ]
Du, Zuliang [1 ]
机构
[1] Henan Univ, Natl & Local Joint Engn Res Ctr High Efficiency D, Collaborat Innovat Ctr Nano Funct Mat & Applicat, Key Lab Special Funct Mat,Minist Educ,Sch Mat Sci, Kaifeng 475004, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
triboelectric nanogenerator; ultra-high charge density; water sterilization; charged water droplet; charge excitation; ELECTROSPRAY IONIZATION; ENERGY; CELLS; TEMPERATURE; BACTERIA; SEPSIS; LIGHT;
D O I
10.1088/1361-6528/ac121e
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Water is one of the most essential resources for the survival of human beings and all other living things. For the point of daily use, water sterilization has enormous social and economic significance, especially for remote and undeveloped areas. Here, we developed a self-powered water sterilization device, which consists of a rotating-disk freestanding triboelectric-layer mode triboelectric nanogenerator (RF-TENG), a voltage-multiplying circuit, and a water droplet control system. The output voltage of the RF-TENG is boosted by a voltage-multiplying circuit and then utilized to charge water droplet. When the rotation rate of the RF-TENG is 300 rpm, the output voltage of a six-fold voltage-multiplying circuit can reach 9319 V, and a 62.50 mu l water droplet can be positively charged to 6320 nC at the flow rate of 0.31 ml min(-1). The charge density and electric filed of the water droplet can reach 101.12 nC mu l(-1) and 11.28 kV cm(-1), respectively. The charged water droplet can kill E. coli and S. aureus quickly and efficiently through electroporation mechanism. With the advantages of low cost, simple in fabrication and usage, portability, and etc, the self-powered water sterilization device has wide application prospects in remote and undeveloped areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Frequency band broadening and charge density enhancement of a vibrational triboelectric nanogenerator with two stoppers
    Qi, Youchao
    Liu, Guoxu
    Kuang, Yang
    Wang, Lu
    Zeng, Jianhua
    Lin, Yuan
    Zhou, Han
    Zhu, Meiling
    Zhang, Chi
    NANO ENERGY, 2022, 99
  • [42] Torus structured triboelectric nanogenerator array for water wave energy harvesting
    Liu, Wenbo
    Xu, Liang
    Bu, Tianzhao
    Yang, Hang
    Liu, Guoxu
    Li, Wenjian
    Pang, Yaokun
    Hu, Chuxiong
    Zhang, Chi
    Cheng, Tinghai
    NANO ENERGY, 2019, 58 : 499 - 507
  • [43] Performance enhanced triboelectric nanogenerator by taking advantage of water in humid environments
    Liu, Dong
    Liu, Jinmei
    Yang, Maosen
    Cui, Nuanyang
    Wang, Haoyu
    Gu, Long
    Wang, Longfei
    Qin, Yong
    NANO ENERGY, 2021, 88
  • [44] Toxic micro/nano particles removal in water via triboelectric nanogenerator
    Park, Byung-Geon
    Lee, Cheoljae
    Kim, Young-Jun
    Park, Jinhyoung
    Kim, Hyeok
    Jung, Young
    Ko, Jong Soo
    Kim, Sang-Woo
    Lee, Ju-Hyuck
    Cho, Hanchul
    NANO ENERGY, 2022, 100
  • [45] Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting
    Xiao, Tian Xiao
    Jiang, Tao
    Zhu, Jian Xiong
    Liang, Xi
    Xu, Liang
    Shao, Jia Jia
    Zhang, Chun Lei
    Wang, Jie
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) : 3616 - 3623
  • [46] A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting
    Lee, Kwangseok
    Lee, Jeong-won
    Kim, Kihwan
    Yoo, Donghyeon
    Kim, Dong Sung
    Hwang, Woonbong
    Song, Insang
    Sim, Jae-Yoon
    MICROMACHINES, 2018, 9 (11):
  • [47] Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting
    Xu, Liang
    Jiang, Tao
    Lin, Pei
    Shao, Jia Jia
    He, Chuan
    Zhong, Wei
    Chen, Xiang Yu
    Wang, Zhong Lin
    ACS NANO, 2018, 12 (02) : 1849 - +
  • [48] Micro water energy harvesting system based on tubular triboelectric nanogenerator
    Tan, Xiangyu
    Na, Zhimin
    Zhuo, Ran
    Zhou, Fangrong
    Wang, Dibo
    Zhu, Longchang
    Wu, Haoying
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [49] High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy
    Xu, Minyi
    Zhao, Tiancong
    Wang, Chuan
    Zhang, Steven L.
    Li, Zhou
    Pan, Xinxiang
    Wang, Zhong Lin
    ACS NANO, 2019, 13 (02) : 1932 - 1939
  • [50] Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting
    Li, Yanhong
    Guo, Ziting
    Zhao, Zhihao
    Gao, Yikui
    Yang, Peiyuan
    Qiao, Wenyan
    Zhou, Linglin
    Wang, Jie
    Wang, Zhong Lin
    APPLIED ENERGY, 2023, 336