Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting

被引:336
|
作者
Xu, Liang [1 ,2 ]
Jiang, Tao [1 ,2 ]
Lin, Pei [1 ,2 ]
Shao, Jia Jia [1 ,2 ]
He, Chuan [1 ,2 ]
Zhong, Wei [1 ,2 ]
Chen, Xiang Yu [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Coll Nanosci & Technol, Beijing 100049, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
triboelectric nanogenerator networks; water wave energy harvesting coupling behavior; ball-shell structure; blue energy; SURFACE MODIFICATION; MECHANICAL ENERGY; BLUE ENERGY; DRIVEN;
D O I
10.1021/acsnano.7b08674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water wave energy is a promising clean energy source, which is abundant but hard to scavenge economically. Triboelectric nanogenerator (TENG) networks provide an effective approach toward massive harvesting of water wave energy in oceans. In this work, a coupling design in TENG networks for such purposes is reported. The charge output of the rationally linked units is over 10 times of that without linkage. TENG networks of three different connecting methods are fabricated and show better performance for the ones with flexible connections. The network is based on an optimized ball-shell structured TENG unit with high responsivity to small agitations. The dynamic behavior of single and multiple TENG units is also investigated comprehensively to fully understand their performance in water. The study shows that a rational design on the linkage among the units could be an effective strategy for TENG clusters to operate collaboratively for reaching a higher performance.
引用
收藏
页码:1849 / +
页数:19
相关论文
共 50 条
  • [1] Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Ouyang, Ri
    Miao, Juan
    Wu, Tao
    Chen, Jiajia
    Sun, Chengfu
    Chu, Jing
    Chen, Dingming
    Li, Xin
    Xue, Hao
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09):
  • [2] Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Jiang, Tao
    Zhang, Li Min
    Chen, Xiangyu
    Han, Chang Bao
    Tang, Wei
    Zhang, Chi
    Xu, Liang
    Wang, Zhong Lin
    ACS NANO, 2015, 9 (12) : 12562 - 12572
  • [3] Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting
    Hang, Xi
    Jiang, Tao
    Liu, Guoxu
    Xiao, Tianxiao
    Xu, Liang
    Li, Wei
    Xi, Fengben
    Zhang, Chi
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (41)
  • [4] High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
    Xi, Yi
    Wang, Jie
    Zi, Yunlong
    Li, Xiaogan
    Han, Changbao
    Cao, Xia
    Hu, Chenguo
    Wang, Zhonglin
    NANO ENERGY, 2017, 38 : 101 - 108
  • [5] Swing-Arm Triboelectric Nanogenerator for Efficient Wave Energy Harvesting
    Yang, Shenghao
    Wang, Shichuan
    Zhang, Lei
    Jia, Pixian
    Feng, Yongle
    Guo, Yida
    Wang, Yuechang
    Zhang, Yangkun
    Li, Bing
    Hao, Chonglei
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (12) : 19054 - 19061
  • [6] Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range
    Yang, Xiya
    Chan, Szeyan
    Wang, Lingyun
    Daoud, Walid A.
    NANO ENERGY, 2018, 44 : 388 - 398
  • [7] Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
    Cheng, Ping
    Guo, Hengyu
    Wen, Zhen
    Zhang, Chunlei
    Yin, Xing
    Li, Xinyuan
    Liu, Di
    Song, Weixing
    Sun, Xuhui
    Wang, Jie
    Wang, Zhong Lin
    NANO ENERGY, 2019, 57 : 432 - 439
  • [8] Torus structured triboelectric nanogenerator array for water wave energy harvesting
    Liu, Wenbo
    Xu, Liang
    Bu, Tianzhao
    Yang, Hang
    Liu, Guoxu
    Li, Wenjian
    Pang, Yaokun
    Hu, Chuxiong
    Zhang, Chi
    Cheng, Tinghai
    NANO ENERGY, 2019, 58 : 499 - 507
  • [9] Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting
    Xiao, Tian Xiao
    Jiang, Tao
    Zhu, Jian Xiong
    Liang, Xi
    Xu, Liang
    Shao, Jia Jia
    Zhang, Chun Lei
    Wang, Jie
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) : 3616 - 3623
  • [10] A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting
    Lee, Kwangseok
    Lee, Jeong-won
    Kim, Kihwan
    Yoo, Donghyeon
    Kim, Dong Sung
    Hwang, Woonbong
    Song, Insang
    Sim, Jae-Yoon
    MICROMACHINES, 2018, 9 (11):