Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization

被引:16
|
作者
Al-Kaabi, Murtadha [1 ]
Dumbrava, Virgil [1 ]
Eremia, Mircea [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Energy, Dept Power Syst, Bucharest 060029, Romania
关键词
multi-objective optimal power flow (MOOPF); hunger games search (HGS); multi-objective hunger games search (MOHGS); Pareto concept; fuzzy set theory; fuel cost; active power losses; emission; voltage deviation; voltage stability index; PARTICLE SWARM OPTIMIZATION; BEE COLONY ALGORITHM; DIFFERENTIAL EVOLUTION ALGORITHM; LEARNING-BASED OPTIMIZATION; COST; EMISSION; SOLVE;
D O I
10.3390/en15228328
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, a new meta-heuristic optimization method inspired by the behavioral choices of animals and hunger-driven activities, called hunger games search (HGS), is suggested to solve and formulate the single- and multi-objective optimal power flow problem in power systems. The main aim of this study is to optimize the objective functions, which are total fuel cost of generator, active power losses in transmission lines, total emission issued by fossil-fueled thermal units, voltage deviation at PQ bus, and voltage stability index. The proposed HGS approach is optimal and easy, avoids stagnation in local optima, and can solve multi-constrained objectives. Various single-and multi-objective (conflicting) functions were proposed simultaneously to solve OPF problems. The proposed algorithm (HGS) was developed to solve the multi-objective function, called the multi-objective hunger game search (MOHGS), by incorporating the proposed optimization (HGS) with Pareto optimization. The fuzzy membership theory is the function responsible to extract the best compromise solution from non-dominated solutions. The crowding distance is the strategies carried out to determine and ordering the Pareto non-dominated set. Two standard tests (IEEE 30 bus and IEEE 57 bus systems) are the power systems that were applied to investigate the performance of the proposed approaches (HGS and MOHGS) for solving single and multiple objective functions with 25 studied cases using MATLAB software. The numerical results obtained by the proposed approaches (HGS and MOHGS) were compared to other optimization algorithms in the literature. The numerical results confirmed the efficiency and superiority of the proposed approaches by achieving an optimal solution and giving the faster convergence characteristics in single objective functions and extracting the best compromise solution and well-distributed Pareto front solutions in multi-objective functions.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Multi-objective optimization of a welding process by the estimation of the Pareto optimal set
    Torres-Trevino, Luis M.
    Reyes-Valdes, Felipe A.
    Lopez, Victor
    Praga-Alejo, Rolando
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8045 - 8053
  • [42] Response surface approximation of Pareto optimal front in multi-objective optimization
    Goel, Tushar
    Vaidyanathan, Rajkumar
    Haftka, Raphael T.
    Shyy, Wei
    Queipo, Nestor V.
    Tucker, Kevin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 879 - 893
  • [43] Quasi-oppositional Biogeography-based Optimization for Multi-objective Optimal Power Flow
    Roy, P. K.
    Mandal, D.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2012, 40 (02) : 236 - 256
  • [44] A modified teaching-learning based optimization for multi-objective optimal power flow problem
    Shabanpour-Haghighi, Amin
    Seifi, Ali Reza
    Niknam, Taher
    ENERGY CONVERSION AND MANAGEMENT, 2014, 77 : 597 - 607
  • [45] Application of Multi-Objective Teaching Learning Based Optimization Algorithm to Optimal Power Flow Problem
    Nayak, M. R.
    Nayak, C. K.
    Rout, P. K.
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING & SECURITY [ICCCS-2012], 2012, 1 : 255 - 264
  • [46] Multi-sensor multi-objective optimization deployment on complex terrain based on Pareto optimal theory
    Xu, Gongguo
    Duan, Xiusheng
    Shan, Ganlin
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (04)
  • [47] Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization
    Asadzadeh, Masoud
    Tolson, Bryan
    ENGINEERING OPTIMIZATION, 2013, 45 (12) : 1489 - 1509
  • [48] Multi-objective Optimal Power Flow Using Fuzzy Satisfactory Stochastic Optimization
    Muangkhiew, Prakaipetch
    Chayakulkheeree, Keerati
    INTERNATIONAL ENERGY JOURNAL, 2022, 22 (03): : 281 - 290
  • [49] Multi-Objective Optimization for Pareto Frontier Sensitivity Analysis in Power Systems
    Giannelos, Spyros
    Zhang, Xi
    Zhang, Tai
    Strbac, Goran
    SUSTAINABILITY, 2024, 16 (14)
  • [50] Multi-objective Optimization of Drilling Parameters Based on Pareto Optimality
    Wang K.
    Wang R.
    Liu Y.
    Song G.
    Song, Guiqiu (song1892@sina.com), 2017, Chinese Mechanical Engineering Society (28): : 1580 - 1587