Diminished-1 modulo 2n+1 squarer design

被引:12
|
作者
Vergos, HT [1 ]
Efstathiou, C
机构
[1] Univ Patras, Comp Engn & Informat Dept, Patras 26500, Greece
[2] Comp Technol Inst, Patras 26221, Greece
来源
关键词
D O I
10.1049/ip-cdt:20055037
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Squarers modulo M are useful design blocks for digital signal processors that internally use a residue number system and for implementing the exponentiators required in cryptographic algorithms. In these applications, some of the most commonly used moduli are those of the form 2(n)+1. To avoid using (n+1)-bit circuits, the diminished-1 number system can be effectively used in modulo 2(n)+1 arithmetic applications. In the paper, for the first time in the open literature, the authors formally derive modulo 2(n)+1 squarers that adopt the diminished-1 number system. The resulting implementations are built using only full-and half-adders and a final diminished-1 adder and can therefore be pipelined straightforwardly.
引用
收藏
页码:561 / 566
页数:6
相关论文
共 50 条
  • [31] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274
  • [32] A Fast Low-Power Modulo 2n+1 Multiplier Design
    Modugu, Rajashekhar
    Choi, Minsu
    Park, Nohpill
    I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 924 - +
  • [33] Novel Modulo 2n+1 Subtractor and Multiplier
    Younes, Dina
    Steffan, Pavel
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON SYSTEMS (ICONS 2011), 2011, : 36 - 38
  • [34] Simplified architecture for modulo (2n+1) multiplication
    Chinese Acad of Sciences, Beijing, China
    IEEE Trans Comput, 3 (333-337):
  • [35] Improved modulo (2n+1) multiplier for IDEA
    Chen, Yi-Jung
    Duh, Dyi-Rong
    Han, Yunghsiang Sam
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2007, 23 (03) : 907 - 919
  • [36] Efficient modulo 2n+1 adder architectures
    Vergos, H. T.
    Efstathiou, C.
    INTEGRATION-THE VLSI JOURNAL, 2009, 42 (02) : 149 - 157
  • [37] A simplified architecture for modulo (2n+1) multiplication
    Ma, YT
    IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (03) : 333 - 337
  • [38] Efficient methods in converting to modulo 2n+1 and 2n-1
    Manochehri, Kooroush
    Pourmozafari, Saadat
    Sadeghian, Babak
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 178 - +
  • [39] A Parallel Prefix Modulo-(2q+2q-1+1) Adder via Diminished-1 Representation of Residues
    Jaberipur, Ghassem
    Badri, D.
    Lee, Jeong-A
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (08) : 3104 - 3108
  • [40] High speed parallel-prefix modulo 2n+1 adders for diminished-one operands
    Vergos, HT
    Efstathiou, C
    Nikolos, D
    ARITH-15 2001: 15TH SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2001, : 211 - 217