Evidence for Fowler-Nordheim behavior in RF breakdown

被引:0
|
作者
BastaniNejad, M. [1 ]
Elmustafa, A. A. [1 ]
Ankenbrandt, C. M. [2 ]
Moretti, A. [2 ]
Popovic, M. [2 ]
Yonehara, K. [2 ]
Kaplan, D. M. [3 ]
Alsharo'a, M. [4 ]
Hanlet, P. M. [4 ]
Johnson, R. P. [4 ]
Kuchnir, M. [4 ]
Newsham, D. [4 ]
机构
[1] ODU, Norfolk, VA USA
[2] Fermi Lab, Chicago, IL USA
[3] IIT, Chicago, IL USA
[4] Muons Inc, Batavia, IL USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments are used to investigate the mechanism of RF breakdown. The images show evidence for melting and boiling in small regions of similar to 10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The local surface density of spark remnants, proportional to the probability of breakdown, shows a power law dependence on the maximum gradient, with E-10 for tungsten, E-11.5 for molybdenum, and E 7 for beryllium. This strong E dependence is reminiscent of Fowler-Nordheim behaviour [1] of electron emission from a cold cathode, which is explained by the quantum-mechanical penetration of a barrier that is characterized by the work function of the metal.
引用
收藏
页码:4255 / +
页数:2
相关论文
共 50 条
  • [11] Dependence of gate oxide breakdown on initial charge trapping under Fowler-Nordheim injection
    Martin, A
    Duane, R
    O'Sullivan, P
    Mathewson, A
    [J]. MICROELECTRONICS AND RELIABILITY, 1998, 38 (6-8): : 1091 - 1096
  • [12] Improved approach to Fowler-Nordheim plot analysis
    Forbes, Richard G.
    Fischer, Andreas
    Mousa, Marwan S.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2013, 31 (02):
  • [13] FOWLER-NORDHEIM TUNNELING IN IMPLANTED MOS DEVICES
    WOLTERS, DR
    PEEK, HL
    [J]. SOLID-STATE ELECTRONICS, 1987, 30 (08) : 835 - 839
  • [14] Electrical conductance from the Fowler-Nordheim tunneling
    Grado-Caffaro, MA
    Grado-Caffaro, M
    [J]. OPTIK, 2005, 116 (06): : 299 - 300
  • [15] Fowler-Nordheim Emission in the THz Hybrid Cavity
    Voin, Miron
    Schachter, Levi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [16] FOWLER-NORDHEIM EMISSION FROM NONPLANAR SURFACES
    ELLIS, RK
    [J]. ELECTRON DEVICE LETTERS, 1982, 3 (11): : 330 - 332
  • [17] Possible cooling by resonant Fowler-Nordheim emission
    Korotkov, AN
    Likharev, KK
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (16) : 2491 - 2493
  • [18] Fowler-Nordheim Plot Analysis: A Progress Report
    Forbes, Richard G.
    Deane, Jonathan H. B.
    Fischer, Andreas
    Mousa, Marwan S.
    [J]. JORDAN JOURNAL OF PHYSICS, 2015, 8 (03): : 125 - 147
  • [19] Fowler-Nordheim theory for a spherical emitting surface
    Edgcombe, CJ
    [J]. ULTRAMICROSCOPY, 2003, 95 (1-4) : 49 - 56
  • [20] Use of a spreadsheet for Fowler-Nordheim equation calculations
    Forbes, RG
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (02): : 534 - 541