Evidence for Fowler-Nordheim behavior in RF breakdown

被引:0
|
作者
BastaniNejad, M. [1 ]
Elmustafa, A. A. [1 ]
Ankenbrandt, C. M. [2 ]
Moretti, A. [2 ]
Popovic, M. [2 ]
Yonehara, K. [2 ]
Kaplan, D. M. [3 ]
Alsharo'a, M. [4 ]
Hanlet, P. M. [4 ]
Johnson, R. P. [4 ]
Kuchnir, M. [4 ]
Newsham, D. [4 ]
机构
[1] ODU, Norfolk, VA USA
[2] Fermi Lab, Chicago, IL USA
[3] IIT, Chicago, IL USA
[4] Muons Inc, Batavia, IL USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 805 MHz RF cavity experiments are used to investigate the mechanism of RF breakdown. The images show evidence for melting and boiling in small regions of similar to 10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The local surface density of spark remnants, proportional to the probability of breakdown, shows a power law dependence on the maximum gradient, with E-10 for tungsten, E-11.5 for molybdenum, and E 7 for beryllium. This strong E dependence is reminiscent of Fowler-Nordheim behaviour [1] of electron emission from a cold cathode, which is explained by the quantum-mechanical penetration of a barrier that is characterized by the work function of the metal.
引用
收藏
页码:4255 / +
页数:2
相关论文
共 50 条
  • [1] Determination of the Fowler-Nordheim tunneling parameters from the Fowler-Nordheim plot
    Chiou, YL
    Gambino, JP
    Mohammad, M
    [J]. SOLID-STATE ELECTRONICS, 2001, 45 (10) : 1787 - 1791
  • [2] MOSFET Degradation Under DC and RF Fowler-Nordheim Stress
    Cattaneo, A.
    Pinarello, S.
    Mueller, J-E
    Weigel, R.
    [J]. PROCEEDINGS OF THE 2014 44TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2014), 2014, : 230 - 233
  • [3] Generation of positive and negative charges under Fowler-Nordheim injection and breakdown
    Ushizaka, H
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (11) : 9204 - 9213
  • [4] Cooling by resonant Fowler-Nordheim emission
    Korotkov, AN
    Likharev, KK
    [J]. PHYSICA B, 2000, 284 : 2030 - 2031
  • [5] Refining the application of Fowler-Nordheim theory
    Forbes, RG
    [J]. ULTRAMICROSCOPY, 1999, 79 (1-4) : 11 - 23
  • [6] Investigation of initial charge trapping and oxide breakdown under Fowler-Nordheim injection
    Martin, A
    [J]. 1998 IEEE INTERNATIONAL INTEGRATED RELIABIILTY WORKSHOP FINAL REPORT, 1998, : 99 - 104
  • [7] Device applied Fowler-Nordheim relationship
    Nicolaescu, D
    Filip, V
    Itoh, J
    Okuyama, F
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (08): : 4802 - 4805
  • [8] FOWLER-NORDHEIM TUNNELING IN MIS STRUCTURES
    KRIEGER, G
    SWANSON, RM
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1981, 28 (10) : 1237 - 1238
  • [9] Nonlinear Fowler-Nordheim behavior of a single SnO2 nanowire
    Joshi, Padmashree D.
    Joag, Dilip S.
    Late, Dattatray J.
    Mulla, Imtiaz S.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2017, 35 (02):
  • [10] Dependence of gate oxide breakdown on initial charge trapping under Fowler-Nordheim injection
    Martin, A
    Duane, R
    O'Sullivan, P
    Mathewson, A
    [J]. MICROELECTRONICS AND RELIABILITY, 1998, 38 (6-8): : 1091 - 1096