Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications

被引:88
|
作者
Wang, Yan [1 ,2 ]
Zu, Chen [3 ]
Hu, Guangliang [4 ]
Luo, Yong [5 ]
Ma, Zongqing [1 ]
He, Kun [1 ]
Wu, Xi [6 ]
Zhou, Jiliu [1 ,6 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Sichuan, Peoples R China
[2] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Fujian, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
[4] Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Sichuan, Peoples R China
[5] Sichuan Univ, West China Hosp, Dept Head & Neck & Mammary Oncol, Chengdu, Sichuan, Peoples R China
[6] Chengdu Univ Informat Technol, Dept Comp Sci, Chengdu, Sichuan, Peoples R China
关键词
Nasopharyngeal carcinoma (NPC); 3D image; Magnetic resonance images (MRI); Medical image segmentation; Deep convolutional neural network; CARCINOMA LESION SEGMENTATION; NASOPHARYNGEAL; IMAGES;
D O I
10.1007/s11063-017-9759-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate tumor delineation in medical images is of great importance in guiding radiotherapy. In nasopharyngeal carcinoma (NPC), due to its high variability, low contrast and discontinuous boundaries in magnetic resonance images (MRI), the margin of the tumor is especially difficult to be identified, making the radiotherapy planning a more challenging problem. The objective of this paper is to develop an automatic segmentation method of NPC in MRI for radiosurgery applications. To this end, we present to segment NPC using a deep convolutional neural network. Specifically, to obtain spatial consistency as well as accurate feature details for segmentation, multiple convolution kernel sizes are employed. The network contains a large number of trainable parameters which capture the relationship between the MRI intensity images and the corresponding label maps. When trained on subjects with pre-labeled MRI, the network can estimate the label class of each voxel for the testing subject which is only given the intensity image. To demonstrate the segmentation performance, we carry on our method on the T1-weighted images of 15 NPC patients, and compare the segmentation results against the radiologist's reference outline. Experimental results show that the proposed method outperforms the traditional hand-crafted features based segmentation methods. The presented method in this paper could be useful for NPC diagnosis and helpful for guiding radiotherapy.
引用
收藏
页码:1323 / 1334
页数:12
相关论文
共 50 条
  • [31] Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars
    DeLatte, Danielle M.
    Crites, Sarah T.
    Guttenberg, Nicholas
    Tasker, Elizabeth J.
    Yairi, Takehisa
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (08) : 2944 - 2957
  • [32] Automatic segmentation of medical images using convolutional neural networks
    Mesbahi, Sourour
    Yazid, Hedi
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [33] Automatic Segmentation Using Convolutional Neural Networks in Prostate Cancer
    Vu, C. C.
    Zamdborg, L.
    Siddiqui, Z. A.
    Gustafson, G. S.
    Krauss, D. J.
    Guerrero, T. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S61 - S61
  • [34] Brain Tumor Automatic Segmentation Using Fully Convolutional Networks
    Cui, Shaoguo
    Mao, Lei
    Xiong, Shuyu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (07) : 1641 - 1647
  • [35] Brain tumor segmentation with Deep Neural Networks
    Havaei, Mohammad
    Davy, Axel
    Warde-Farley, David
    Biard, Antoine
    Courville, Aaron
    Bengio, Yoshua
    Pal, Chris
    Jodoin, Pierre-Marc
    Larochelle, Hugo
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 18 - 31
  • [36] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [37] Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation
    Budak, Umit
    Guo, Yanhui
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    MEDICAL HYPOTHESES, 2020, 134
  • [38] Auto -segmentation of pancreatic tumor in multi -parametric MRI using deep convolutional neural networks
    Liang, Ying
    Schott, Diane
    Zhang, Ying
    Wang, Zhiwu
    Nasief, Haidy
    Paulson, Eric
    Hall, William
    Knechtges, Paul
    Erickson, Beth
    Li, X. Allen
    RADIOTHERAPY AND ONCOLOGY, 2020, 145 : 193 - 200
  • [39] Brain tumor segmentation with deep convolutional symmetric neural network
    Chen, Hao
    Qin, Zhiguang
    Ding, Yi
    Tian, Lan
    Qin, Zhen
    NEUROCOMPUTING, 2020, 392 : 305 - 313
  • [40] Brain Tumor Segmentation with Cascaded Deep Convolutional Neural Network
    Baid, Ujjwal
    Shah, Nisarg A.
    Talbar, Sanjay
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 90 - 98