Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications

被引:116
|
作者
Tang, Diyong [1 ]
Luo, Yanyue [1 ]
Lei, Weidong [1 ]
Xiang, Qi [1 ]
Ren, Wei [1 ]
Song, Wenchuan [2 ,3 ]
Chen, Ke [1 ]
Sun, Jie [1 ,2 ,3 ]
机构
[1] South Cent Univ Nationalities, Coll Resources & Environm Sci, Wuhan 430074, Hubei, Peoples R China
[2] South Cent Univ Nationalities, Key Lab Catalysis & Mat Sci, State Ethn Affairs Commiss, Wuhan 430074, Hubei, Peoples R China
[3] South Cent Univ Nationalities, Minist Educ, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Carbon; Supercapacitor; Molten salt; Hydrothermal treatment; ACTIVATED CARBON; ENERGY-STORAGE; KOH ACTIVATION; BIOMASS WASTE; SURFACE-AREA; BY-PRODUCT; CARBONIZATION; CAPACITANCE; CONVERSION; POROSITY;
D O I
10.1016/j.apsusc.2018.08.153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomass-derived carbons with hierarchical porous structures are widely considered as one of the most promising electrodes for supercapacitor. In this work, we present a facile approach to synthesize hierarchical porous carbon materials from waste lentinus edodes. It exhibits that the duration of the hydrothermal treatment process strongly affects the pore size distribution of the prepared carbon materials. Many narrow pores are formed during the hydrothermal process; these preformed pores are vital for the formation of micropores and development of larger mesopores in the following molten salt activation process. The as-obtained HM-24, synthesized by hydrothermally treated for 24 h and subsequently activated in molten Na2CO3-K2CO3 for 1 h, possesses high specific surface area of 1144 m(2) g(-1) and developed hierarchical micro-and mesoporous structures. Moreover, oxygen-and nitrogen-containing functional groups are detected at the carbon surface. When evaluated as an electrode in a three-electrode system with 1M H2SO4 electrolyte, the as-prepared HM-24 exhibits a high specific capacitance of 389 F g(-1) at 0.2 A g(-1) and a good rate capacity with capacitance remaining 174 F g(-1) at 20 A g(-1). Furthermore, the assembled symmetric supercapacitor delivers a high specific capacitance of 329 F g(-1) at 0.2 A g(-1), excellent energy density of 45.69 Wh kg(-1) and good cycling stability which retains 90.3% of the initial capacitance at 5 A g(-1) after 10,000 cycles.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 50 条
  • [41] Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications
    Wen, Yanliang
    Kierzek, Krzysztof
    Min, Jiakang
    Chen, Xuecheng
    Gong, Jiang
    Niu, Ran
    Wen, Xin
    Azadmanjiri, Jalal
    Mijowska, Ewa
    Tang, Tao
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (05)
  • [42] "Frying" milk powder by molten salt to prepare nitrogen-doped hierarchical porous carbon for high performance supercapacitor
    Tian, Pengfei
    Wang, Yanhui
    Jia, Shaopei
    Gao, Hongwei
    Zhou, Shuyu
    Xu, Hanqing
    Song, Shiwei
    Zang, Jianbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 : 650 - 659
  • [43] Molten salt synthesis of nitrogen-doped hierarchical porous carbon fromplantain peels for high-performance supercapacitor
    Nanzumani, Nashiru Mahadeen
    Agyemang, Frank Ofori
    Mensah-Darkwa, Kwadwo
    Appiah, Eugene Sefa
    Arthur, Emmanuel Kwesi
    Gikunoo, Emmanuel
    Koomson, Bennetta
    Jadhav, Amol R.
    Raji, Akeem
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 920
  • [44] KHCO3 Chemical-Activated Hydrothermal Porous Carbon Derived from Sugarcane bagasse for Supercapacitor Applications
    Wang, Liujie
    Ma, Xueji
    Ma, Zhihua
    Li, Pengfa
    Zhang, Laiping
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (18)
  • [45] High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor
    Li, Jinxiao
    Gao, Yang
    Han, Kuihua
    Qi, Jianhui
    Li, Ming
    Teng, Zhaocai
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [46] Novel interconnected hierarchical porous carbon derived from biomass for enhanced supercapacitor application
    Jalalah, Mohammed
    Han, HyukSu
    Mahadani, Milan
    Nayak, Arpan Kumar
    Harraz, Farid A.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 935
  • [47] Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor
    Tong, Yun-Xiao
    Li, Xiao-Ming
    Xie, Li-Jing
    Su, Fang-Yuan
    Li, Jing-Ping
    Sun, Guo-Hua
    Gao, Yi-Dan
    Zhang, Nian
    Wei, Qiang
    Chen, Cheng-Meng
    ENERGY STORAGE MATERIALS, 2016, 3 : 140 - 148
  • [48] High performance hierarchical porous carbon derived from distinctive plant tissue for supercapacitor
    Jinxiao Li
    Yang Gao
    Kuihua Han
    Jianhui Qi
    Ming Li
    Zhaocai Teng
    Scientific Reports, 9
  • [49] Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode
    Hao, Pin
    Zhao, Zhenhuan
    Tian, Jian
    Li, Haidong
    Sang, Yuanhua
    Yu, Guangwei
    Cai, Huaqiang
    Liu, Hong
    Wong, C. P.
    Umar, Ahmad
    NANOSCALE, 2014, 6 (20) : 12120 - 12129
  • [50] Carbon nanofibers derived from cellulose via molten-salt method as supercapacitor electrode
    Zhong, Yidan
    Wang, Tao
    Yan, Ming
    Huang, Xingyu
    Zhou, Xiaofan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 207 : 541 - 548