Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications

被引:116
|
作者
Tang, Diyong [1 ]
Luo, Yanyue [1 ]
Lei, Weidong [1 ]
Xiang, Qi [1 ]
Ren, Wei [1 ]
Song, Wenchuan [2 ,3 ]
Chen, Ke [1 ]
Sun, Jie [1 ,2 ,3 ]
机构
[1] South Cent Univ Nationalities, Coll Resources & Environm Sci, Wuhan 430074, Hubei, Peoples R China
[2] South Cent Univ Nationalities, Key Lab Catalysis & Mat Sci, State Ethn Affairs Commiss, Wuhan 430074, Hubei, Peoples R China
[3] South Cent Univ Nationalities, Minist Educ, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Carbon; Supercapacitor; Molten salt; Hydrothermal treatment; ACTIVATED CARBON; ENERGY-STORAGE; KOH ACTIVATION; BIOMASS WASTE; SURFACE-AREA; BY-PRODUCT; CARBONIZATION; CAPACITANCE; CONVERSION; POROSITY;
D O I
10.1016/j.apsusc.2018.08.153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomass-derived carbons with hierarchical porous structures are widely considered as one of the most promising electrodes for supercapacitor. In this work, we present a facile approach to synthesize hierarchical porous carbon materials from waste lentinus edodes. It exhibits that the duration of the hydrothermal treatment process strongly affects the pore size distribution of the prepared carbon materials. Many narrow pores are formed during the hydrothermal process; these preformed pores are vital for the formation of micropores and development of larger mesopores in the following molten salt activation process. The as-obtained HM-24, synthesized by hydrothermally treated for 24 h and subsequently activated in molten Na2CO3-K2CO3 for 1 h, possesses high specific surface area of 1144 m(2) g(-1) and developed hierarchical micro-and mesoporous structures. Moreover, oxygen-and nitrogen-containing functional groups are detected at the carbon surface. When evaluated as an electrode in a three-electrode system with 1M H2SO4 electrolyte, the as-prepared HM-24 exhibits a high specific capacitance of 389 F g(-1) at 0.2 A g(-1) and a good rate capacity with capacitance remaining 174 F g(-1) at 20 A g(-1). Furthermore, the assembled symmetric supercapacitor delivers a high specific capacitance of 329 F g(-1) at 0.2 A g(-1), excellent energy density of 45.69 Wh kg(-1) and good cycling stability which retains 90.3% of the initial capacitance at 5 A g(-1) after 10,000 cycles.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 50 条
  • [31] Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor
    Li, Xiangping
    Su, Zhenping
    Liang, Peng
    Zhang, Jianguang
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (07) : 6237 - 6248
  • [32] Dual Molten Salt Synthesis of Oxygen Rich Hierarchical Porous Carbon as Cathode Materials for Zinc-Ion Hybrid Capacitor
    Zhang, Xinyang
    Ni, Jun
    Chen, Weijian
    Xu, Hui
    Qiao, Longfei
    Lu, Rui
    Wu, Xiaoliang
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (02):
  • [33] Hierarchically Porous Carbon Derived from PolyHIPE for Supercapacitor and Deionization Applications
    Hu, Wei
    Xie, Feifei
    Li, Yuquan
    Wu, Zhengchen
    Tian, Ke
    Wang, Miao
    Pan, Likun
    Li, Lei
    LANGMUIR, 2017, 33 (46) : 13364 - 13375
  • [34] Pomelo Peel Derived Hierarchical Porous Carbon as Electrode Materials for High-Performance Supercapacitor
    Wu Zhong-Yu
    Fan Lei
    Tao You-Rong
    Wang Wei
    Wu Xing-Cai
    Zhao Jian-Wei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (07) : 1249 - 1260
  • [35] Hierarchical flaky porous carbon derived from waste polyimide film for high-performance aqueous supercapacitor electrodes
    Liu, Yuzhe
    Wang, Hao
    Li, Chengcai
    Wang, Shaohui
    Li, Lin
    Song, Chengwen
    Wang, Tonghua
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (01) : 370 - 382
  • [36] Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode
    Zheng, Li -Hong
    Chen, Ming -Hui
    Liang, Shu-Xia
    Lu, Qiu-Feng
    DIAMOND AND RELATED MATERIALS, 2021, 113
  • [37] Hierarchical porous carbon materials from bio waste-mango stone for high-performance supercapacitor electrodes
    Su, Xiaoli
    Jiang, Shuai
    Zheng, Xiucheng
    Guan, Xinxin
    Liu, Pu
    Peng, Zhikun
    MATERIALS LETTERS, 2018, 230 : 123 - 127
  • [38] Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications
    Wen, Yanliang
    Zhang, Lipeng
    Liu, Jie
    Wen, Xin
    Chen, Xuecheng
    Ma, Jiali
    Tang, Tao
    Mijowska, Ewa
    NANOTECHNOLOGY, 2019, 30 (29)
  • [39] Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption
    Xiao, Pei-Wen
    Meng, Qinghai
    Zhao, Li
    Li, Jing-Jing
    Wei, Zhixiang
    Han, Bao-Hang
    MATERIALS & DESIGN, 2017, 129 : 164 - 172
  • [40] Molten salt synthesis of capacitive porous carbon from Allium cepa (onion) for supercapacitor application
    Bassey, Edaetii
    Yang, Lvye
    Cao, Mengjue
    Feng, Yi
    Yao, Jianfeng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 881