Broadening of upper polariton branch in GaAs, GaN, and ZnO semiconductor microcavities

被引:4
|
作者
Lin, S. -C.
Chen, J. -R.
Lu, T. -C. [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2011年 / 103卷 / 01期
关键词
BOSE-EINSTEIN CONDENSATION; OPTICAL-ABSORPTION; BULK;
D O I
10.1007/s00340-010-4175-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The well-distinguished lower polariton branches (LPBs) and upper polariton branches (UPBs) are characteristics of strong coupling in semiconductor microcavities (MCs). In practice, however, the UPBs are often broadening especially in wide-bandgap material MCs. We present in detail the possible physical mechanisms for the broadening of UPBs for different designs of MCs by numerical simulations based on GaAs, GaN and ZnO materials. The calculated results show that the UPBs of the GaN- and ZnO-based MCs will become indistinct when the thickness of optical cavity is larger than lambda and 0.25 lambda, respectively, mainly attributed to the larger product of the absorption coefficient and the active layer thickness. In wide-bandgap materials, it would be relatively easier to observe the UPB in the case of negative exciton-cavity mode detuning due to the exciton-like UPB and lower absorption of scattering states. In addition, the inhomogeneous broadening would be an important factor causing the invisible UPB in wide-bandgap semiconductor MCs. We demonstrate that in multiple quantum well embedded ZnO-based MCs, the UPB could be well defined due to the large 2D exciton binding energy and the small product of absorption coefficient and active layer thickness. These results show that the UPBs can be properly defined in wide-bandgap semiconductor MCs by appropriate design of the MC structures.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [41] Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO
    Jamadi, O.
    Reveret, F.
    Mallet, E.
    Disseix, P.
    Medard, F.
    Mihailovic, M.
    Solnyshkov, D.
    Malpuech, G.
    Leymarie, J.
    Lafosse, X.
    Bouchoule, S.
    Li, F.
    Leroux, M.
    Semond, F.
    Zuniga-Perez, J.
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [42] Parametric polariton solitons in coherently pumped semiconductor microcavities
    Egorov, O. A.
    Skryabin, D. V.
    Lederer, F.
    PHYSICAL REVIEW B, 2011, 84 (16)
  • [43] Optical circuits based on polariton neurons in semiconductor microcavities
    Liew, T. C. H.
    Kavokin, A. V.
    Shelykh, I. A.
    PHYSICAL REVIEW LETTERS, 2008, 101 (01)
  • [44] Polariton interactions in microcavities with atomically thin semiconductor layers
    Bleu, Olivier
    Li, Guangyao
    Levinsen, Jesper
    Parish, Meera M.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [45] Room-temperature polariton lasing in semiconductor microcavities
    Christopoulos, S.
    von Hogersthal, G. Baldassarri Hoger
    Grundy, A. J. D.
    Lagoudakis, P. G.
    Kavokin, A. V.
    Baumberg, J. J.
    Christmann, G.
    Butte, R.
    Feltin, E.
    Carlin, J. -F.
    Grandjean, N.
    PHYSICAL REVIEW LETTERS, 2007, 98 (12)
  • [46] Optically erasing disorder in semiconductor microcavities using polariton-polariton interactions
    Liew, T. C. H.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (05): : 880 - 884
  • [47] Polariton–dark exciton interactions in bistable semiconductor microcavities
    Rozas E.
    Sedov E.
    Brune Y.
    Höfling S.
    Kavokin A.
    Aßmann M.
    Physical Review B, 2023, 108 (16)
  • [48] Polariton spin beats in semiconductor quantum well microcavities
    Scalbert, D.
    Vladimirova, M.
    Brunetti, A.
    Cronenberger, S.
    Nawrocki, A.
    Bloch, J.
    Kavokin, A. V.
    Shelykh, I. A.
    Andre, R.
    Solnyshkov, D.
    Malpuech, G.
    SUPERLATTICES AND MICROSTRUCTURES, 2008, 43 (5-6) : 417 - 426
  • [49] Theory of polariton-electron interactions in semiconductor microcavities
    Li, Guangyao
    Bleu, Olivier
    Levinsen, Jesper
    Parish, Meera M.
    PHYSICAL REVIEW B, 2021, 103 (19)
  • [50] Polariton-induced optical asymmetry in semiconductor microcavities
    Armitage, A
    Skolnick, MS
    Kavokin, AV
    Whittaker, DM
    Astratov, VN
    Gehring, GA
    Roberts, JS
    PHYSICAL REVIEW B, 1998, 58 (23): : 15367 - 15370