Broadening of upper polariton branch in GaAs, GaN, and ZnO semiconductor microcavities

被引:4
|
作者
Lin, S. -C.
Chen, J. -R.
Lu, T. -C. [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2011年 / 103卷 / 01期
关键词
BOSE-EINSTEIN CONDENSATION; OPTICAL-ABSORPTION; BULK;
D O I
10.1007/s00340-010-4175-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The well-distinguished lower polariton branches (LPBs) and upper polariton branches (UPBs) are characteristics of strong coupling in semiconductor microcavities (MCs). In practice, however, the UPBs are often broadening especially in wide-bandgap material MCs. We present in detail the possible physical mechanisms for the broadening of UPBs for different designs of MCs by numerical simulations based on GaAs, GaN and ZnO materials. The calculated results show that the UPBs of the GaN- and ZnO-based MCs will become indistinct when the thickness of optical cavity is larger than lambda and 0.25 lambda, respectively, mainly attributed to the larger product of the absorption coefficient and the active layer thickness. In wide-bandgap materials, it would be relatively easier to observe the UPB in the case of negative exciton-cavity mode detuning due to the exciton-like UPB and lower absorption of scattering states. In addition, the inhomogeneous broadening would be an important factor causing the invisible UPB in wide-bandgap semiconductor MCs. We demonstrate that in multiple quantum well embedded ZnO-based MCs, the UPB could be well defined due to the large 2D exciton binding energy and the small product of absorption coefficient and active layer thickness. These results show that the UPBs can be properly defined in wide-bandgap semiconductor MCs by appropriate design of the MC structures.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [31] Parametric amplification and polariton liquids in semiconductor microcavities
    Baumberg, JJ
    Lagoudakis, PG
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (11): : 2210 - 2223
  • [32] Theory of polariton parametric interactions in semiconductor microcavities
    Ciuti, C
    Schwendimann, P
    Quattropani, A
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (10) : S279 - S293
  • [33] Polarization instability in a polariton system in semiconductor microcavities
    Gavrilov, S. S.
    Brichkin, A. S.
    Dorodnyi, A. A.
    Tikhodeev, S. G.
    Gippius, N. A.
    Kulakovskii, V. D.
    JETP LETTERS, 2010, 92 (03) : 171 - 178
  • [34] Motion of Spin Polariton Bullets in Semiconductor Microcavities
    Adrados, C.
    Liew, T. C. H.
    Amo, A.
    Martin, M. D.
    Sanvitto, D.
    Anton, C.
    Giacobino, E.
    Kavokin, A.
    Bramati, A.
    Vina, L.
    PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [35] Light engineering of the polariton landscape in semiconductor microcavities
    Amo, A.
    Pigeon, S.
    Adrados, C.
    Houdre, R.
    Giacobino, E.
    Ciuti, C.
    Bramati, A.
    PHYSICAL REVIEW B, 2010, 82 (08):
  • [36] Exciton-polariton wakefields in semiconductor microcavities
    Tercas, H.
    Mendonca, J. T.
    PHYSICS LETTERS A, 2016, 380 (7-8) : 822 - 827
  • [37] Polarization instability in a polariton system in semiconductor microcavities
    S. S. Gavrilov
    A. S. Brichkin
    A. A. Dorodnyi
    S. G. Tikhodeev
    N. A. Gippius
    V. D. Kulakovskii
    JETP Letters, 2010, 92 : 171 - 178
  • [38] Electron-polariton scattering in semiconductor microcavities
    Lagoudakis, PG
    Martin, MD
    Baumberg, JJ
    Qarry, A
    Cohen, E
    Pfeiffer, LN
    PHYSICAL REVIEW LETTERS, 2003, 90 (20)
  • [39] Hard excitation of stimulated polariton-polariton scattering in semiconductor microcavities
    Gippius, NA
    Tikhodeev, SG
    Keldysh, LV
    Kulakovskii, VD
    PHYSICS-USPEKHI, 2005, 48 (03) : 306 - 312
  • [40] Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity
    Coles, David M.
    Michetti, Paolo
    Clark, Caspar
    Adawi, Ali M.
    Lidzey, David G.
    PHYSICAL REVIEW B, 2011, 84 (20):