Broadening of upper polariton branch in GaAs, GaN, and ZnO semiconductor microcavities

被引:4
|
作者
Lin, S. -C.
Chen, J. -R.
Lu, T. -C. [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2011年 / 103卷 / 01期
关键词
BOSE-EINSTEIN CONDENSATION; OPTICAL-ABSORPTION; BULK;
D O I
10.1007/s00340-010-4175-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The well-distinguished lower polariton branches (LPBs) and upper polariton branches (UPBs) are characteristics of strong coupling in semiconductor microcavities (MCs). In practice, however, the UPBs are often broadening especially in wide-bandgap material MCs. We present in detail the possible physical mechanisms for the broadening of UPBs for different designs of MCs by numerical simulations based on GaAs, GaN and ZnO materials. The calculated results show that the UPBs of the GaN- and ZnO-based MCs will become indistinct when the thickness of optical cavity is larger than lambda and 0.25 lambda, respectively, mainly attributed to the larger product of the absorption coefficient and the active layer thickness. In wide-bandgap materials, it would be relatively easier to observe the UPB in the case of negative exciton-cavity mode detuning due to the exciton-like UPB and lower absorption of scattering states. In addition, the inhomogeneous broadening would be an important factor causing the invisible UPB in wide-bandgap semiconductor MCs. We demonstrate that in multiple quantum well embedded ZnO-based MCs, the UPB could be well defined due to the large 2D exciton binding energy and the small product of absorption coefficient and active layer thickness. These results show that the UPBs can be properly defined in wide-bandgap semiconductor MCs by appropriate design of the MC structures.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [1] Broadening of upper polariton branch in GaAs, GaN, and ZnO semiconductor microcavities
    S.-C. Lin
    J.-R. Chen
    T.-C. Lu
    Applied Physics B, 2011, 103 : 137 - 144
  • [2] Angle-dependent polariton collisional broadening in semiconductor microcavities
    Huynh, A
    Tignon, J
    Larsson, O
    Roussignol, P
    Delalande, C
    André, R
    Romestain, R
    Dang, LS
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 459 - 460
  • [3] Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities
    Faure, S.
    Guillet, T.
    Lefebvre, P.
    Bretagnon, T.
    Gil, B.
    PHYSICAL REVIEW B, 2008, 78 (23):
  • [4] Nonlinearities in emission from the lower polariton branch of semiconductor microcavities
    Tartakovskii, AI
    Kulakovskii, VD
    Krizhanovskii, DN
    Skolnick, MS
    Astratov, VN
    Armitage, A
    Roberts, JS
    PHYSICAL REVIEW B, 1999, 60 (16) : 11293 - 11296
  • [5] Polariton emission in GaN microcavities
    Gurioli, M.
    Zamfirescu, M.
    Stokker-Cheregi, F.
    Vinattieri, A.
    Sellers, I. R.
    Semond, F.
    Leroux, M.
    Massies, J.
    SUPERLATTICES AND MICROSTRUCTURES, 2007, 41 (5-6) : 284 - 288
  • [6] Polariton squeezing in semiconductor microcavities
    Baas, A
    Karr, J
    Et, MR
    Gambino, E
    JOURNAL DE PHYSIQUE IV, 2004, 119 : 119 - 120
  • [7] Polariton interactions in semiconductor microcavities
    Deveaud, Benoit
    COMPTES RENDUS PHYSIQUE, 2016, 17 (08) : 874 - 892
  • [8] Polariton traps in semiconductor microcavities
    Baumberg, JJ
    Savvidis, PG
    Lagoudakis, PG
    Martin, MD
    Whittaker, D
    Butte, R
    Skolnick, M
    Roberts, J
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 385 - 389
  • [9] Polariton solitons in semiconductor microcavities
    Skryabin, D. V.
    Egorov, O. A.
    Gorbach, A. V.
    Yulin, A. V.
    Lederer, F.
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210
  • [10] Polariton amplification in semiconductor microcavities
    Saba, M
    Kundermann, S
    Ciuti, C
    Guillet, T
    Staehli, JL
    Deveaud, B
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 238 (03): : 432 - 438