On the minimum number of edges in triangle-free 5-critical graphs

被引:4
|
作者
Postle, Luke [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
COLOR-CRITICAL GRAPHS; ORES CONJECTURE;
D O I
10.1016/j.ejc.2017.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kostochka and Yancey proved that every 5-critical graph G satisfies: vertical bar E(G)vertical bar >= 9/4 vertical bar V(G)vertical bar - 5/4. A construction of Ore gives an infinite family of graphs meeting this bound. We prove that there exists epsilon, delta > 0 such that if G is a 5-critical graph, then vertical bar E(G)vertical bar >= (9/4 + epsilon)vertical bar V(G)vertical bar - 5/4 - delta T(G) where T(G) is the maximum number of vertex-disjoint cliques of size three or four where cliques of size four have twice the weight of a clique of size three. As a corollary, a triangle-free 5-critical graph G satisfies: vertical bar E(G)vertical bar >= (9/4 + epsilon)vertical bar V(G)vertical bar - 5/4. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:264 / 280
页数:17
相关论文
共 50 条
  • [1] CONTRACTILE EDGES IN TRIANGLE-FREE GRAPHS
    EGAWA, Y
    ENOMOTO, H
    SAITO, A
    [J]. COMBINATORICA, 1986, 6 (03) : 269 - 274
  • [2] MINIMUM TRIANGLE-FREE GRAPHS
    RADZISZOWSKI, SP
    KREHER, DL
    [J]. ARS COMBINATORIA, 1991, 31 : 65 - 92
  • [3] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    [J]. COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [4] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    [J]. Combinatorica, 2002, 22 : 591 - 596
  • [5] An invariant for minimum triangle-free graphs
    Kruger, Oliver
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 371 - 388
  • [6] On the number of pentagons in triangle-free graphs
    Hatami, Hamed
    Hladky, Jan
    Kral, Daniel
    Norine, Serguei
    Razborov, Alexander
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (03) : 722 - 732
  • [7] The number of the maximal triangle-free graphs
    Balogh, Jozsef
    Petrickova, Sarka
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1003 - 1006
  • [8] ON THE HULL NUMBER OF TRIANGLE-FREE GRAPHS
    Dourado, Mitre C.
    Protti, Fabio
    Rautenbach, Dieter
    Szwarcfiter, Jayme L.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 23 (04) : 2163 - 2172
  • [9] On minimum balanced bipartitions of triangle-free graphs
    Li, Haiyan
    Liang, Yanting
    Liu, Muhuo
    Xu, Baogang
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 557 - 566
  • [10] On minimum balanced bipartitions of triangle-free graphs
    Haiyan Li
    Yanting Liang
    Muhuo Liu
    Baogang Xu
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 557 - 566