On the minimum number of edges in triangle-free 5-critical graphs

被引:4
|
作者
Postle, Luke [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
COLOR-CRITICAL GRAPHS; ORES CONJECTURE;
D O I
10.1016/j.ejc.2017.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kostochka and Yancey proved that every 5-critical graph G satisfies: vertical bar E(G)vertical bar >= 9/4 vertical bar V(G)vertical bar - 5/4. A construction of Ore gives an infinite family of graphs meeting this bound. We prove that there exists epsilon, delta > 0 such that if G is a 5-critical graph, then vertical bar E(G)vertical bar >= (9/4 + epsilon)vertical bar V(G)vertical bar - 5/4 - delta T(G) where T(G) is the maximum number of vertex-disjoint cliques of size three or four where cliques of size four have twice the weight of a clique of size three. As a corollary, a triangle-free 5-critical graph G satisfies: vertical bar E(G)vertical bar >= (9/4 + epsilon)vertical bar V(G)vertical bar - 5/4. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:264 / 280
页数:17
相关论文
共 50 条
  • [41] On the evolution of triangle-free graphs
    Steger, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224
  • [42] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [43] CYCLES IN TRIANGLE-FREE GRAPHS
    Li, Xiaojuan
    Wei, Bing
    Zhu, Yongjin
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 343 - 356
  • [44] THE NUMBER OF 4-CYCLES IN TRIANGLE-FREE ORIENTED GRAPHS
    TAZAWA, S
    NARA, C
    MOON, JW
    [J]. DISCRETE MATHEMATICS, 1995, 143 (1-3) : 287 - 291
  • [45] Proper orientation number of triangle-free bridgeless outerplanar graphs
    Ai, Jiangdong
    Gerke, Stefanie
    Gutin, Gregory
    Shi, Yongtang
    Taoqiu, Zhenyu
    [J]. JOURNAL OF GRAPH THEORY, 2020, 95 (02) : 256 - 266
  • [46] The diagnosability of triangle-free graphs
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 530 : 58 - 65
  • [47] The number of maximal independent sets in connected triangle-free graphs
    Chang, Gerard J.
    Jou, Min-Jen
    [J]. Discrete Mathematics, 1999, 197-198 : 169 - 178
  • [48] Minimizing the number of independent sets in triangle-free regular graphs
    Cutler, Jonathan
    Radcliffe, A. J.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (03) : 793 - 800
  • [49] MINIMAL 5-CHROMATIC TRIANGLE-FREE GRAPHS
    AVIS, D
    [J]. JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 397 - 400
  • [50] Triangle-free graphs whose independence number equals the degree
    Brandt, Stephan
    [J]. DISCRETE MATHEMATICS, 2010, 310 (03) : 662 - 669