Positivity properties of some special matrices

被引:4
|
作者
Grover, Priyanka [1 ]
Panwar, Veer Singh [1 ]
Reddy, A. Satyanarayana [1 ]
机构
[1] Shiv Nadar Univ, Dept Math, Dadri 201314, UP, India
关键词
Bell numbers; Infinitely divisible matrices; Positive semidefinite matrices; Schur product; Stirling numbers; Totally positive matrices; The beta function;
D O I
10.1016/j.laa.2020.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that for positive real numbers 0 < lambda(1) < ... < lambda(n), [1/beta(lambda i,lambda j)], where beta(.,.) denotes the beta function, is infinitely divisible and totally positive. For [1/beta(i,j)], the Cholesky decomposition and successive elementary bidiagonal decomposition are computed. Let to (n) be the nth Bell number. It is proved that [to(i + j)] is a totally positive matrix but is infinitely divisible only upto order 4. It is also shown that the symmetrized Stirling matrices are totally positive. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:203 / 215
页数:13
相关论文
共 50 条
  • [41] On some positivity properties of the interquark potential in QCD
    Nussinov, S
    PHYSICAL REVIEW LETTERS, 2001, 86 (21) : 4762 - 4763
  • [42] On Some Properties of Polynomial Matrices and Rational Function Matrices
    Chen Wanyi
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 132 - 134
  • [43] On sufficient conditions for the total positivity and for the multiple positivity of matrices
    Katkova, Olga M.
    Vishnyakova, Anna M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) : 1083 - 1097
  • [44] Total positivity of Narayana matrices
    Wang, Yi
    Yang, Arthur L. B.
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1264 - 1269
  • [45] Total positivity of recursive matrices
    Chen, Xi
    Liang, Huyile
    Wang, Yi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 383 - 393
  • [46] Positivity around Cauchy matrices
    Sano, Takashi
    Tamura, Hiroki
    POSITIVITY, 2021, 25 (02) : 507 - 513
  • [47] Complete positivity of affinity matrices
    Xu, Guanghui
    Xu, Changqing
    PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, : 360 - 362
  • [48] Canonical forms of some special matrices useful in statistics
    Mitrouli, M.
    Karcanias, N.
    Koukouvinos, C.
    Journal of Applied Mathematics and Computing, 1997, 4 (01): : 63 - 82
  • [49] Some nilpotent, tridiagonal matrices with a special sign pattern
    Behn, Antonio
    Driessel, Kenneth R.
    Hentzel, Irvin Roy
    Vander Velden, Kent A.
    Wilson, James
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4446 - 4450
  • [50] Canonical forms of some special matrices useful in statistics
    M. Mitrouli
    N. Karcanias
    C. Koukouvinos
    Korean Journal of Computational & Applied Mathematics, 1997, 4 (1): : 63 - 82