Bell numbers;
Infinitely divisible matrices;
Positive semidefinite matrices;
Schur product;
Stirling numbers;
Totally positive matrices;
The beta function;
D O I:
10.1016/j.laa.2020.03.008
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
It is shown that for positive real numbers 0 < lambda(1) < ... < lambda(n), [1/beta(lambda i,lambda j)], where beta(.,.) denotes the beta function, is infinitely divisible and totally positive. For [1/beta(i,j)], the Cholesky decomposition and successive elementary bidiagonal decomposition are computed. Let to (n) be the nth Bell number. It is proved that [to(i + j)] is a totally positive matrix but is infinitely divisible only upto order 4. It is also shown that the symmetrized Stirling matrices are totally positive. (C) 2020 Elsevier Inc. All rights reserved.
机构:
Univ New Brunswick, Dept Math, POB 4400, Fredericton, NB E3B 5A3, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
Kucerovsky, Dan
Mousavand, Kaveh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
Mousavand, Kaveh
Sarraf, Aydin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada