Nonlinear time-harmonic Maxwell equations in a bounded domain: Lack of compactness

被引:3
|
作者
Mederski, Jaroslaw [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
time-harmonic Maxwell equations; perfect conductor; ground state; variational methods; strongly indefinite functional; Nehari-Pankov manifold; Brezis-Nirenberg problem; critical exponent; GROUND-STATES; POTENTIALS; NONSMOOTH; THEOREMS; SPECTRUM; OPERATOR;
D O I
10.1007/s11425-017-9312-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey recent results on ground and bound state solutions E : O. R3 of the problem 8< :. x (. x E) + E = | E | p in O; x E = 0 on @ O on bounded Lipschitz domain O. R3, where. x denotes the curl operator in R3. The equation describes the propagation of the time-harmonic electric field R {E (x) e i!t} in nonlinear isotropic material O with = -"!2 6 0, where nd " stand for the permeabilitynd the linear part of the permittivity of the material. The nonlinear term | E | p with 2 < p 6 2 = 6 comes from the nonlinear polarizationnd the boundary conditionsre those for O surrounded by perfect conductor. The problem has variational structure; however the energy functionalssociated with the problem is strongly indefinitend does not satisfy the Palais-Smale condition. We show the underlying difficulties of the problemnd enlist some open questions.
引用
收藏
页码:1963 / 1970
页数:8
相关论文
共 50 条
  • [41] On the solution of time-harmonic scattering problems for Maxwell's equations
    Hazard, C
    Lenoir, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) : 1597 - 1630
  • [42] Efficient iterative solvers for time-harmonic Maxwell equations using domain decomposition and algebraic multigrid
    Butyugin, Dmitry
    JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (06) : 480 - 485
  • [43] An iterative method for time-harmonic integral Maxwell's equations
    Collino, F
    Després, B
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 171 - 181
  • [44] On the Regularity of Time-Harmonic Maxwell Equations with Impedance Boundary Conditions
    Chen, Zhiming
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 759 - 770
  • [45] The energy method for constructing time-harmonic solutions to the maxwell equations
    Denisenko V.V.
    Siberian Mathematical Journal, 2011, 52 (2) : 207 - 221
  • [46] Interior penalty method for the indefinite time-harmonic Maxwell equations
    Paul Houston
    Ilaria Perugia
    Anna Schneebeli
    Dominik Schötzau
    Numerische Mathematik, 2005, 100 : 485 - 518
  • [47] NONOVERLAPPING DOMAIN DECOMPOSITION WITH SECOND ORDER TRANSMISSION CONDITION FOR THE TIME-HARMONIC MAXWELL'S EQUATIONS
    Rawat, Vineet
    Lee, Jin-Fa
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (06): : 3584 - 3603
  • [48] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [49] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2048 - A2071
  • [50] Wire approximation for Poisson and time-harmonic Maxwell equations.
    Rogier, Francois
    Roussel, Jean-Francois
    Volpert, Dominique
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) : 633 - 636