NONOVERLAPPING DOMAIN DECOMPOSITION WITH SECOND ORDER TRANSMISSION CONDITION FOR THE TIME-HARMONIC MAXWELL'S EQUATIONS

被引:36
|
作者
Rawat, Vineet [1 ]
Lee, Jin-Fa [2 ]
机构
[1] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[2] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2010年 / 32卷 / 06期
关键词
Maxwell's equations; nonoverlapping domain decomposition; finite elements; transmission conditions; OPTIMIZED SCHWARZ METHODS; FINITE-ELEMENT; SCATTERING;
D O I
10.1137/090777220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonoverlapping domain decomposition methods have been shown to provide efficient iterative algorithms for the solution of the time-harmonic Maxwell's equations. Convergence of the algorithms depends strongly upon the nature of the transmission conditions that communicate information between adjacent subdomains. In this work, we introduce a new second order transmission condition that improves convergence. In contrast to previous high order interface conditions, the new condition uses two second order transverse derivatives to improve the convergence of evanescent modes without deteriorating the convergence of propagating modes. An analysis using a splitting of the field into traverse electric and magnetic components demonstrates the improved convergence provided by the transmission condition. Numerical experiments demonstrate the effectiveness of the algorithm.
引用
收藏
页码:3584 / 3603
页数:20
相关论文
共 50 条
  • [1] High-order transmission conditions in a domain decomposition method for the time-harmonic Maxwell's equations in inhomogeneous media
    Stupfel, Bruno
    Chanaud, Mathieu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 372 : 385 - 405
  • [2] A domain decomposition approach for heterogeneous time-harmonic Maxwell equations
    Alonso, A
    Valli, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 143 (1-2) : 97 - 112
  • [3] Domain decomposition approach for heterogeneous time-harmonic Maxwell equations
    Universidad Complutense de Madrid, Madrid, Spain
    Comput Methods Appl Mech Eng, 1-2 (97-112):
  • [4] Domain decomposition algorithms for time-harmonic Maxwell equations with damping
    Rodriguez, AA
    Valli, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 825 - 848
  • [5] A Source Transfer Domain Decomposition Method for Time-Harmonic Maxwell's Equations
    Cui, Tao
    Wang, Ziming
    Xiang, Xueshuang
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (02)
  • [6] A SCALABLE NONOVERLAPPING AND NONCONFORMAL DOMAIN DECOMPOSITION METHOD FOR SOLVING TIME-HARMONIC MAXWELL EQUATIONS IN R3
    Pen, Zhen
    Lee, Jin-Fa
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1266 - A1295
  • [7] Domain decomposition methods for time-harmonic Maxwell equations:: Numerical results
    Rodríguez, AA
    Valli, A
    RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 157 - 171
  • [8] A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations
    El Bouajaji, M.
    Thierry, B.
    Antoine, X.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 38 - 57
  • [9] Effective transmission conditions for domain decomposition methods applied to the time-harmonic curl-curl Maxwell's equations
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Lee, Jin-Fa
    Peng, Zhen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 232 - 247
  • [10] Non-conformal domain decomposition methods for time-harmonic Maxwell equations
    Shao, Yang
    Peng, Zhen
    Lim, Kheng Hwee
    Lee, Jin-Fa
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2145): : 2433 - 2460