NONOVERLAPPING DOMAIN DECOMPOSITION WITH SECOND ORDER TRANSMISSION CONDITION FOR THE TIME-HARMONIC MAXWELL'S EQUATIONS

被引:36
|
作者
Rawat, Vineet [1 ]
Lee, Jin-Fa [2 ]
机构
[1] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[2] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2010年 / 32卷 / 06期
关键词
Maxwell's equations; nonoverlapping domain decomposition; finite elements; transmission conditions; OPTIMIZED SCHWARZ METHODS; FINITE-ELEMENT; SCATTERING;
D O I
10.1137/090777220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonoverlapping domain decomposition methods have been shown to provide efficient iterative algorithms for the solution of the time-harmonic Maxwell's equations. Convergence of the algorithms depends strongly upon the nature of the transmission conditions that communicate information between adjacent subdomains. In this work, we introduce a new second order transmission condition that improves convergence. In contrast to previous high order interface conditions, the new condition uses two second order transverse derivatives to improve the convergence of evanescent modes without deteriorating the convergence of propagating modes. An analysis using a splitting of the field into traverse electric and magnetic components demonstrates the improved convergence provided by the transmission condition. Numerical experiments demonstrate the effectiveness of the algorithm.
引用
收藏
页码:3584 / 3603
页数:20
相关论文
共 50 条
  • [41] Superconvergence Analysis of High-Order Rectangular Edge Elements for Time-Harmonic Maxwell's Equations
    Sun, Ming
    Li, Jichun
    Wang, Peizhen
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 510 - 535
  • [42] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [43] Superconvergence Analysis of High-Order Rectangular Edge Elements for Time-Harmonic Maxwell’s Equations
    Ming Sun
    Jichun Li
    Peizhen Wang
    Zhimin Zhang
    Journal of Scientific Computing, 2018, 75 : 510 - 535
  • [44] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [45] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [46] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [47] THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE
    DOBSON, D
    FRIEDMAN, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) : 507 - 528
  • [48] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [49] Heterogeneous time-harmonic Maxwell equations in bidimensional domains
    Rodríguez, AA
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 753 - 758
  • [50] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152