Modeling the Dirichlet distribution using multiplicative functions

被引:2
|
作者
Bareikis, Gintautas [1 ]
Maciulis, Algirdas [1 ]
机构
[1] Vilnius Univ, Inst Comp Sci, Didlaukio 47, LT-08303 Vilnius, Lithuania
来源
关键词
natural divisor; multiplicative function; Dirichlet distribution; BETA DISTRIBUTION; DISTRIBUTION LAW; DIVISORS;
D O I
10.15388/namc.2020.25.16518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For q, m, n , d is an element of N and some multiplicative function f >= 0, we denote by T-3(n) the sum of f (d) over the ordered triples (q, m, d) with qmd = 12. We prove that Cesaro mean of distribution functions defined by means of T-3 uniformly converges to the one-parameter Dirichlet distribution function. The parameter of the limit distribution depends on the values of f on primes. The remainder term is estimated as well.
引用
收藏
页码:282 / 300
页数:19
相关论文
共 50 条