Dirichlet Series Associated with Strongly q-Multiplicative Functions

被引:0
|
作者
Giedrius Alkauskas
机构
[1] Vilnius University,Department of Mathematics and Informatics
[2] Institute of Mathematics and Informatics,undefined
来源
The Ramanujan Journal | 2004年 / 8卷
关键词
Dirichlet series; strongly ; -multiplicative functions;
D O I
暂无
中图分类号
学科分类号
摘要
In this work the Dirichlet series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\kappa {\text{f(}}s{\text{) = }}\sum\nolimits_n^\infty {\frac{{f(n - 1)}}{{n^s }}} $$ \end{document} associated with real strongly q-multiplicative functions f(n) are studied. We will confine ourselves to the case ∑i=0q−1f(i) = 0. It is known that in this case the function κf(s) has an analytic continuation to the whole complex plane as an entire function with trivial zeros on the negative real line. The real function Λf(t) satisfying the integral equation with delayed argument \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\delta _f \Lambda _f (\frac{t}{q}) = \int_0^t {\Lambda _f (u) du} $$ \end{document} for some nonzero real δf naturally appears in the representation of the function κf(s). In this article we find some asymptotic properties of the function κf(s), prove that κf(s) is an entire function of order 2, and also prove that in the region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Re s \leqslant - k_0 ,|\Im s| \leqslant \frac{\pi }{{2\ln q}}$$ \end{document} the function κf(s) has only trivial zeros which are simple.
引用
收藏
页码:13 / 21
页数:8
相关论文
共 50 条
  • [1] Dirichlet series associated with strongly q-multiplicative functions
    Alkauskas, G
    RAMANUJAN JOURNAL, 2004, 8 (01): : 13 - 21
  • [2] On q-multiplicative functions
    Indlekofer, KH
    Kátai, I
    Lee, YW
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (3-4): : 393 - 402
  • [3] On generalized q-multiplicative functions
    Feher, J
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (3-4): : 357 - 365
  • [4] A NOTE ON q-MULTIPLICATIVE FUNCTIONS
    Bassily, N. L.
    Katai, I.
    LITHUANIAN MATHEMATICAL JOURNAL, 2009, 49 (01) : 1 - 4
  • [5] A note on q-multiplicative functions
    N. L. Bassily
    I. Kátai
    Lithuanian Mathematical Journal, 2009, 49 : 1 - 4
  • [6] A characterization of some q-multiplicative functions
    Mauclaire, JL
    ACTA ARITHMETICA, 2005, 120 (04) : 313 - 336
  • [7] On q-additive and q-multiplicative functions
    Kátai, I
    NUMBER THEORY AND DISCRETE MATHEMATICS, 2002, : 61 - 76
  • [8] ALMOST PERIODIC Q-MULTIPLICATIVE FUNCTIONS
    COQUET, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (2-3): : 63 - 65
  • [9] PSEUDO-RANDOM Q-MULTIPLICATIVE FUNCTIONS
    COQUET, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (04): : 175 - 178
  • [10] COMPLETELY Q-MULTIPLICATIVE FUNCTIONS - THE MELLIN TRANSFORM APPROACH
    GRABNER, PJ
    ACTA ARITHMETICA, 1993, 65 (01) : 85 - 96