Modeling the Dirichlet distribution using multiplicative functions

被引:2
|
作者
Bareikis, Gintautas [1 ]
Maciulis, Algirdas [1 ]
机构
[1] Vilnius Univ, Inst Comp Sci, Didlaukio 47, LT-08303 Vilnius, Lithuania
来源
关键词
natural divisor; multiplicative function; Dirichlet distribution; BETA DISTRIBUTION; DISTRIBUTION LAW; DIVISORS;
D O I
10.15388/namc.2020.25.16518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For q, m, n , d is an element of N and some multiplicative function f >= 0, we denote by T-3(n) the sum of f (d) over the ordered triples (q, m, d) with qmd = 12. We prove that Cesaro mean of distribution functions defined by means of T-3 uniformly converges to the one-parameter Dirichlet distribution function. The parameter of the limit distribution depends on the values of f on primes. The remainder term is estimated as well.
引用
收藏
页码:282 / 300
页数:19
相关论文
共 50 条
  • [11] ON DISTRIBUTION OF VALUES OF MULTIPLICATIVE ARITHMETICAL FUNCTIONS
    BAKSHTIS, A
    DOKLADY AKADEMII NAUK SSSR, 1969, 187 (06): : 1215 - &
  • [12] Bivariate Beta distribution and multiplicative functions
    Gintautas Bareikis
    Algirdas Mačiulis
    European Journal of Mathematics, 2021, 7 : 1668 - 1688
  • [13] DISTRIBUTION OF VALUES OF A CLASS OF MULTIPLICATIVE FUNCTIONS
    SMATI, A
    ACTA ARITHMETICA, 1992, 61 (01) : 83 - 100
  • [14] On a multiplicative distribution of functions in complex plane
    Bartoszek, Bartosz
    Dlugosz, Renata
    AEQUATIONES MATHEMATICAE, 2023, 97 (02) : 425 - 437
  • [15] Bivariate Beta distribution and multiplicative functions
    Bareikis, Gintautas
    Maciulis, Algirdas
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1668 - 1688
  • [16] On a multiplicative distribution of functions in complex plane
    Bartosz Bartoszek
    Renata Długosz
    Aequationes mathematicae, 2023, 97 : 425 - 437
  • [17] DISTRIBUTION OF VALUES OF COMPLEX MULTIPLICATIVE FUNCTIONS
    DELANGE, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (03): : 161 - 164
  • [18] SPATIAL JOINT SPECIES DISTRIBUTION MODELING USING DIRICHLET PROCESSES
    Shirota, Shinichiro
    Gelfand, Alan E.
    Banerjee, Sudipto
    STATISTICA SINICA, 2019, 29 (03) : 1127 - 1154
  • [19] Distribution of Dirichlet L-functions
    Dong, Zikang
    Wang, Weijia
    Zhang, Hao
    MATHEMATIKA, 2023, 69 (03) : 719 - 750
  • [20] MODELING OF BROWNIAN MOTION BY SUMS OF MULTIPLICATIVE FUNCTIONS
    LYASHENK.NN
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1294 - 1295