Holomorphic triples and the prescribed curvature problem on S2

被引:0
|
作者
Goncalves, Alexandre C. [1 ]
机构
[1] Univ Sao Paulo, FFCLRP, Dept Computacao & Matemat, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
关键词
holomorphic triples; conformal curvature equations; co-homology classes; CONFORMAL DEFORMATION; RIEMANN SURFACE; METRICS; EXISTENCE; MANIFOLDS; EQUATION;
D O I
10.4310/CAG.2016.v24.n3.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new results OIL existence of solutions for the prescribed gaussian curvature problem on the euclidean sphere S-2. Those results are achieved by relating this problem with the holornorphic triplex theory on liiemann surfaces. We think this approach might be applied to study some other semi-linear elliptic equations of 2nd order on the sphere.
引用
收藏
页码:559 / 591
页数:33
相关论文
共 50 条
  • [31] The intersection of complete geodesics on S2 with positive curvature
    Detang Zhou
    Annali di Matematica Pura ed Applicata, 2003, 182 (3) : 315 - 324
  • [32] THE BURNSIDE PROBLEM FOR Diffω (S2)
    Hurtado, Sebastian
    Kocsard, Alejandro
    Rodriguez-Hertz, Federico
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (17) : 3261 - 3290
  • [33] On the?2-Nirenberg problem on S2
    Li, YanYan
    Lu, Han
    Lu, Siyuan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (10)
  • [34] The Dirichlet problem for a prescribed mean curvature equation
    Tsukamoto, Yuki
    HIROSHIMA MATHEMATICAL JOURNAL, 2020, 50 (03) : 325 - 337
  • [35] THE DIRICHLET PROBLEM FOR THE EQUATION OF PRESCRIBED GAUSS CURVATURE
    TRUDINGER, NS
    URBAS, JIE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (02) : 217 - 231
  • [36] ON THE PRESCRIBED NEGATIVE GAUSS CURVATURE PROBLEM FOR GRAPHS
    Figalli, Alessio
    Kehle, Christoph
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 1420 - 1435
  • [37] Topological hypothesis for the prescribed scalar curvature problem
    Aubin, T
    Bahri, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10): : 843 - 850
  • [38] On the prescribed Q-curvature problem on Sn
    Chtioui, Hichem
    Rigane, Afef
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (11-12) : 635 - 638
  • [39] The Dirichlet Problem for a Class of Prescribed Curvature Equations
    Heming Jiao
    Zaichen Sun
    The Journal of Geometric Analysis, 2022, 32
  • [40] Prescribed Gauss curvature problem on singular surfaces
    D'Aprile, Teresa
    Marchis, Francesca De
    Ianni, Isabella
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (04)