Prescribed Gauss curvature problem on singular surfaces

被引:2
|
作者
D'Aprile, Teresa [1 ]
Marchis, Francesca De [2 ]
Ianni, Isabella [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Roma Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
关键词
LARGE CONFORMAL METRICS; LIOUVILLE EQUATIONS; COMPACT SURFACES; EXISTENCE;
D O I
10.1007/s00526-018-1373-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of at least one conformal metric of prescribed Gaussian curvature on a closed surface Sigma admitting conical singularities of orders ai ' s at points pi ' s. In particular, we are concerned with the case where the prescribed Gaussian curvature is signchanging. Such a geometrical problem reduces to solving a singular Liouville equation. By employing a min-max scheme jointly with a finite dimensional reductionmethod, we deduce new perturbative results providing existence when the quantity.( Sigma) + Sigma i ai approaches a positive even integer, where.( Sigma) is the Euler characteristic of the surface Sigma.
引用
收藏
页数:36
相关论文
共 50 条